MCA (Revised)

Term-End Examination
 $\begin{array}{cc}\sim & \text { Term-End Examination } \\ \underset{\sim}{\sim} & \text { June, } 2010 \\ \underset{\sim}{\sim} & \text { MCS-031 }: \\ \sim & \text { DESIGN AND ANALYSIS OF }\end{array}$ ALGORITHMS

Time : 3 hours

Maximum Marks : 100
Note: Question No. 1 is compulsory. Attempt any three from the rest.

1. (a) (i) What are the different methodologies 4 should involved in the design of an algorithm.
(ii) Arrange the following growth rates in the increasing order. $0\left(\mathrm{n}^{3}\right), 0(1), 0\left(\mathrm{n}^{2}\right)$, $0(n \log n)$.
(b) (i) Draw the recursion tree for the 4 following - and write the following.
$\mathrm{T}(n)=4 \mathrm{~T}\left(\frac{n}{2}\right)+\mathrm{n}^{2}$ in θ notations.
(ii) Use Master's method to find tight asymptotic bounds for the following recurrence :

$$
\mathrm{T}(n)=\mathrm{T}(n-1)+n
$$

i) For the following four matrices find
the order of parenthesization for the optimal chain multiplication.

$$
\begin{aligned}
& \mathrm{A}_{1}=15 \times 5 \\
& \mathrm{~A}_{2}=5 \times 10 \\
& \mathrm{~A}_{3}=10 \times 20 \\
& \mathrm{~A}_{4}=20 \times 25
\end{aligned}
$$

$\mathrm{A}_{1} \ldots \mathrm{~A}_{4}$ are the matrices of given order.
(ii) Give greedy algorithm for Huffman code.
(d) (i) Give a divide and conquer based algorithm to find $\mathrm{i}^{\text {th }}$ largest element in an array of size n.
(ii) Find the minimum spanning for the graph using Prim's algo.

(e) (i) Construct a turing machine that finds
the sum of two natural numbers.
(ii) Consider the following instance of the

PCP
Alphabet $\Sigma=\{0,1,2\}$
List $\mathrm{L}=(0,1,2)$
List M $=(00,11,22)$
Does PCP have a solution ?
2. (a) (i) Find the topological ordering of given graph :

(ii) Apply DFS algorithm on the above
graph.
(iii) Write Kruskal's algorithm also 8 evaluate its time Complexity.
3. (a) What are regular expressions ? Write a regular expression over $\Sigma=\{a, b\}$ to generate all string that end with three a's.
(b) Represent the following graph using (i) arrays (ii) Adjacency list.

(c) Prove that the Halting problem is undecidable.
4. (a) "Merge Sort is considered to be best if space complexity is not a constraint". Explain the statement by some mathematical proof.
(b) Write the algorithm for Best First Search. 4 $4+4$ What is minimax principal.
(c) Discuss the relationship between class P, NP, NP complete and NP Hard problems with suitable example of each class.
5. (a) To sort the list $15,10,13,9,12,17$ stored in

A [1..6] using heap sort first build a heap for the list and then recursively delete the root and restore the heap.
(b) Write the algorithm for binary search also evaluate its time complexity.
(c) Sort the given list using merge sort :
$25,12,15,11,17,8$
also find the number of comparisons and assignment operations required.

