No. of Printed Pages : 4

.

CS-15	
C5-15	

MCA (III Year) Term-End Examination June, 2010 CS-15 : RELATIONAL DATABASE MANAGEMENT SYSTEM					
Time : 3 hours		Maximum Marks : 75			
Note : Question number 1 is compulsory. Answer any three questions from the rest.					
1. (a)	Consider the database : EMPLOYEE WORKS COMPANY MANAGES e_name stands c_name stands m_name stands For each of the relational alg	e following (e_name, stre (e_name, C_; (c_name, C_; (c_name, city (e_name, m_ ds for emple s for compan s for compan s for manager following que gebraic expr	relational 15 eet, city) name, salary) y) _name) oyee name, y name and name. rries, give the ession and		
CS-15		1	P.T.O.		

(i) Find the names of all employees who work for ABC corporation.

.

- (ii) Find the names of all employees who live in the same city where the company for which they work is located.
- (iii) Find the names of those employees of the ABC corporation who earn the same salary.
- (iv) Find the name, street and city of those employees who work for the ABC corporation and earn more than Rs. 5,00,000/- per annum.
- (v) Find the names of managers who work in the XYZ corporation located in Shimla.
- (b) Explain multi valued dependency with the 7 help of an example. How is it related to normalization ? Explain it with the help of an example.
- (c) Explain the following with the help of an 8 example each :
 - (i) Two phase locking
 - (ii) Redo in Database recovery
 - (iii) Authorisation matrix
 - (iv) Serialisability
- CS-15

2

- 2. (a) "The algorithm to detect a deadlock is based 5 on the detection of a circular chain in the wait for graph". With the help of an example, explain the deadlock detection algorithm.
 - (b) Describe normalization using join 6 dependency, with the help of an example.
 - (c) What is the role of database statistics in 4Query evaluation ? Explain with the help of an example.
- 3. (a) A relational database consists of the 6 following relations about students in an institute.

STUDENT (ENROLNUM#, STUDENT_NAME, ADDRESS, AGE)

DEPARTMENT (DEPT_NAME, COURSE#, TEACHER)

TIME TABLE (COURSE#, SUBJECT_NAME, SEMESTER, TIME, ROOM#)

PERFORMANCE (ENROLNUM#, COURSE#, GRADE)

Write a program in embedded SQL to get the names of all those students who have secured 'A' grade in a course offered by the computer firm Department in the second semester.

3

CS-15

P.T.O.

(b) Define indices and their advantages in 6
 RDBMS. Explain the comments of clustering and hashing indices, using an example of each.

1

- (c) Explain the concept of Referential Integrity 3with the help of an example.
- 4. Explain the following terms : 15
 - (a) Physical data independence
 - (b) Aggregation in the context of E R diagram
 - (c) Audit trails
 - (d) Distributed locking
 - (e) Domain integrity
- 5. (a) With the help of an example, explain 4 redundancy, update anomalies, insertion anomalies and deletion anomalies.
 - (b) Explain the working of the index sequential . 6 file organization with a suitable diagram.
 - (c) Explain the term functional dependence 5
 with the help of an example. Explain with the help of an example how FDS can be used for lossless join and dependency preserving decomposition of a relation.

4