No. of Printed Pages : 3

01712

CS-13

ADCA / MCA (III YEAR)

Term-End Examination June, 2010

CS-13 : OPERATING SYSTEMS

 (a) Explain the concept of paged segmentation with an example. What is address translation in segmentation ? Give an example. (b) Consider the following page reference 1 string: 2, 4, 1, 3, 2, 5, 6, 1, 3, 0, 4. Calculate the number of page faults for LRU and OPT page replacement algorithms. Assume the memory with 3 frames. Also discuss Belady's anamoly in reference to FIFO algorithm. (c) What are the essential conditions for deadlock to occur ? Explain any one algorithm for deadlock recovery (with an example). (d) How can database and operating system security be carried out ? Suggest some procedures/algorithms. 	Note :	Question number 1 is compulsory. Answer any three questions from the rest.
 (b) Consider the following page reference 1 string: 2, 4, 1, 3, 2, 5, 6, 1, 3, 0, 4. Calculate the number of page faults for LRU and OPT page replacement algorithms. Assume the memory with 3 frames. Also discuss Belady's anamoly in reference to FIFO algorithm. (c) What are the essential conditions for deadlock to occur ? Explain any one algorithm for deadlock recovery (with an example). (d) How can database and operating system security be carried out ? Suggest some procedures/algorithms. 	1. (a) Explain the concept of paged segmentation g with an example. What is address translation in segmentation ? Give an example.
 (c) What are the essential conditions for deadlock to occur ? Explain any one algorithm for deadlock recovery (with an example). (d) How can database and operating system security be carried out ? Suggest some procedures/algorithms. 	(b	 Consider the following page reference 10 string: 2, 4, 1, 3, 2, 5, 6, 1, 3, 0, 4. Calculate the number of page faults for LRU and OPT page replacement algorithms. Assume the memory with 3 frames. Also discuss Belady's anamoly in reference to FIFO algorithm.
(d) How can database and operating system security be carried out ? Suggest some procedures/algorithms.	(c) What are the essential conditions for 8 deadlock to occur ? Explain any one algorithm for deadlock recovery (with an example).
procedures, ungernants.	(d	How can database and operating system 4 security be carried out ? Suggest some procedures/algorithms.

(a) Draw Gantt charts and also find out the 5 average waiting time, average response time for the given set of processes (all arriving at the same time) :

<u>Process</u>	<u>CPU Burst time</u>
P0	4
P1	2
P2	7
P3	3
P4	1

for :

(i) FCFS

(ii) RR (quantum=2) algorithms

- (b) How is a distributed OS different from a **4** Network OS ? Give key features of both.
- (c) What is meant by the term 'scheduling' ? 6Differentiate between various categories of scheduling. (Give examples).
- 3. (a) What is a conditional critical region ? 10
 Implement the solution for diners philosophers problem with the help of
 semaphore.
 - (b) Give and explain the architecture of 5 WINDOWS 2000.

CS-13

2

(a)	Explain the concept of multiprogrammed OS. What is thrashing ? Explain the principle of 'working set'.	6
(b)	Distinguish between various types of file allocation strategies. Also explain directory structure in UNIX.	6
(c)	Give a brief note on IPC in an OS.	3
(a)	Assume that the disk head is currently at cylinder 0. (Where the total cylinders are from 0 to 199). The disk queue requests are 75, 120, 155, 80, 170, 60, 100. Calculate the total distance (in cylinders) moved by the disk arm by the following algorithms : (i) SCAN (ii) LOOK (iii) SSTF	9
(b)	Give example of a real-time OS. What is the difference between a multiprogramming and a multiprocessing OS/architecture ?	4

(c) Give a note on synchronous and **2** asynchronous data transfer in a device.

CS-13

4.

5.

3