No. of Printed Pages : 5

01064

CS-07

ADCA / MCA (II Yr.)

Term-End Examination

June, 2010

CS-07 : DISCRETE MATHEMATICS

Time : 3 hours						Maximum Marks : 75			
Note		Question 1 is	5 CO	mp	uls:	ory	. Attempt any three from	the	
1.	(a)	Construct the truth table for : $(P \lor \theta) \lor \exists P$							
	(b)	-					ng ↑ only, where ↑θ≡٦(P∧θ).	4	
	(c)	Let there be a graph G with adjacency matrix as follows :							
		A(G) =	Lv	U	•	•	~]		

1

CS-07

P.T.O.

(d) What is a bipartite graph ? Check if 3 following graph is bipartite.

- (e) If $x = (1 \ 2 \ 3)$, $y = (2 \ 4 \ 3)$, $z = (1 \ 3 \ 4)$ are cyclic **4** permutation on $A = \{1, 2, 3, 4\}$. Then show that xyz = 1, the identity map.
- (f) Show that the basic five element pentagonal **4** lattice :

is not distributive.

- (g) Express number 7 in 1s and 2s complement 3 form.
- (h) Draw truth table for half adder and draw 4
 circuit diagram for half adder using AND,
 OR and NOT gate.

2

CS-07

- 2. (a) Find Disjunctive Normal Form (DNF) for 4 $p \rightarrow ((p \rightarrow q) \land \neg (7 q \lor 7p)).$
 - (b) Write the inverse, converse and 4 contrapositive of $p \rightarrow (q \rightarrow r)$.
 - (c) Define well formed formula (wff). Also give 3 an example of wff.
 - (d) Show that $\neg r$ is a valid conclusion from the **4** premises

 $p \rightarrow \neg q$

 $r \rightarrow p$

 $q(where \neg stands NOT)$ without using truth table.

3. (a) Solve for optimal tour the following graph 8 using two optimal method.

CS-07

(b) Find minimum spanning tree using Prim's 5 algorithm for following graph :

- (c) Define K-regular graph. Explain the 2 concept with example.
- 4. (a) In a class of 25 students, 12 have taken 6 mathematics, 8 have taken mathematics but not Biology. Find the number of students who have taken Mathematics and Biology and those who have taken Biology but not Mathematics.
 - (b) Given A = {1, 2, 3, 4}. Consider relation 2 in A : R = {(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (4, 4)}
 - (i) Draw its directed graph. 4
 - (ii) Is R reflexive, symmetric, transitive, antisymmetric ?
 - (c) Define following : 3
 - (i) Normal Fuzzy Set.
 - (ii) Support of a Fuzzy Set.
- CS-07 4 P.T.O.

5. (a) Which of the following Hasse diagrams are 3 lattices and which are not? If not, why?

- (b) If (L, ∩, ∪) is a bounded distributive lattice. 3
 then an element cannot have more than one complement. Prove it.
- (c) Simplify the boolean function using k-map : 4

F (a, b, c, d) = $\Sigma(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11)$.

- (d) Draw the logic network for the expression $3x^{1}y^{1}z + x^{1}yz + xy^{1}$.
- (e) Let A = {1, 3, 9, 27, 81}. Draw Hasse diagram 2
 of the poset (A, /).

5