ADCA / MCA (II Yr.)

Term-End Examination

June, 2010

CS-07 : DISCRETE MATHEMATICS

Time : 3 hours Maximum Marks : 75

Note : Question 1 is compulsory. Attempt any three from the rest.

1. (a) Construct the truth table for:

$$
(P \vee \theta) \vee \neg P
$$

(b) Express $P \downarrow \theta$ using \uparrow only, where
$P \downarrow \theta \equiv\urcorner(P \vee \theta)$ and $P \uparrow \theta \equiv\urcorner(P \wedge \theta)$.
(c) Let there be a graph G with adjacency
matrix as follows :
$A(G)=\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0\end{array}\right]$
check if G is connected.
(d) What is a bipartite graph ? Check if following graph is bipartite.

(e) If $x=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right), y=\left(\begin{array}{lll}2 & 4 & 3\end{array}\right), z=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right)$ are cyclic permutation on $A=\{1,2,3,4)$. Then show that $x y z=1$, the identity map.
(f) Show that the basic five element pentagonal 4 lattice :

is not distributive.
(g) Express number -7 in 1 s and 2 s complement 3 form.
(h) Draw truth table for half adder and draw 4 circuit diagram for half adder using AND, OR and NOT gate.
2. (a) Find Disjunctive Normal Form (DNF) for 4
$p \rightarrow((p \rightarrow q) \wedge \neg(7 q \vee 7 p))$.
(b) Write the inverse, converse and 4 contrapositive of $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})$.
(c) Define well formed formula (wff). Also give 3 an example of wff.
(d) Show that $\neg r$ is a valid conclusion from the 4 premises
$p \rightarrow \neg q$
$r \rightarrow p$
q (where \neg stands NOT) without using truth table.
3. (a) Solve for optimal tour the following graph 8 using two optimal method.

(b) Find minimum spanning tree using Prim's algorithm for following graph :

(c) Define K-regular graph. Explain the

2 concept with example.
4. (a) In a class of 25 students, 12 have taken mathematics, 8 have taken mathematics but not Biology. Find the number of students who have taken Mathematics and Biology and those who have taken Biology but not Mathematics.
(b) Given $\mathrm{A}=\{1,2,3,4\}$. Consider relation in $A: R=\{(1,1),(2,2),(2,3),(3,2),(4,2)$, $(4,4)$ \}
(i) Draw its directed graph.
(ii) Is R reflexive, symmetric, transitive, antisymmetric?
(c) Define following :
(i) Normal Fuzzy Set.
(ii) Support of a Fuzzy Set.
5. (a) Which of the following Hasse diagrams are lattices and which are not? If not, why?

I

II

(b) If (L, \cap, U) is a bounded distributive lattice.
then an element cannot have more than one complement. Prove it.
(c) Simplify the boolean function using k -map :
$F(a, b, c, d)=\Sigma(0,1,2,3,4,5,6,7,8,9,11)$.
(d) Draw the logic network for the expression 3 $x^{1} y^{1} z+x^{1} y z+x y^{1}$.
(e) Let $\mathrm{A}=\{1,3,9,27,81\}$. Draw Hasse diagram of the poset $(\mathrm{A}, /$).

