ADIT/BIT PROGRAMME

Term-End Examination

June, 2010

CSI-32 : DISCRETE MATHEMATICS

Maximum Marks : 75
Note : All questions from Section - A are compulsory. Attempt any three questions from Section - B.

SECTION-A

1. State True/False for each of the following and $\mathbf{1 0}$ also give reason for your answer :
(a) $P(S)$ is power set of set S. Then $P[P(S)]=P(S)$
(b) Total number of equivalence relations of set $\{1,2,3,4\}$ is 15 .
(c) If ϕ is an empty set. Then $P(\phi)=\{\phi\}$
(d) A cycle of length 2 is called a transposition.
(e) If $f(x)=x^{2}+x$ and $g(x)=x+1$ Then $\mathrm{fog}=x^{2}+x+1$
2. (a) Suppose $X=\{2,1,4,3\}$. Consider the fuzzy
sets A and B of X given by
$A=\left\{\frac{5}{2}, \frac{.1}{1}, \frac{1}{4}, \frac{0.8}{3}\right\}$ and $B=\left\{\frac{4}{1}, \frac{.6}{2}, \frac{.7}{3}, \frac{.6}{4}\right\}$
Find AUB, Where $\frac{x}{r}$ denotes ' r is the degree of membership of x^{\prime}
(b) Show that $\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{P})$ is a tautology. 3
(c) Find Principal Disjunctive Normal form of 4 $(\sim p \vee \sim q) \rightarrow(\sim p \vee r)$, where ${ }^{\prime} \sim x^{\prime}$ denotes 'negation of x^{\prime}
3. (a) Express P $\downarrow \mathrm{Q}$ using \uparrow only. 3
(b) Let R be the relation in the natural numbers 4 N defined by x is related to y if and only if ' $x-y$ is divisible by 8 '. Prove that R is an equivalence relation.
(c) Let $f(x)=2 x-1, \mathrm{~g}(x)=5 x$ Show that 3 $f \circ \mathrm{~g} \neq$ gof.

SECTION - B

Attempt any three questions from this section.
4. (a) Let A be the set of all triangles in a plane and let R be a relation on A defined as $a R b$ if and only if " a is congruent to b " for $a, b \in A$. Show that R is an equivalence relation.
(b) For any three arbitrary Sets A, B and C, show
that $(A-B)-C=A-(B \cup C)$
(c) Draw Hesse Diagram for the set
$X=\{1,2,3, \ldots . . ., 10\}$, w. r. t. the relation "divides"
5. (a) Draw Venn diagram showing $(A \cap B)=(A \cap C)$ But $B \neq C$
(b) Among 50 students in a class, 26 got grade ' A ' in the first examination and 21 got grade ' A ' in second examination. If 17 student did not get an ' A ' in either examination, how many students got ' A ' in both the examinations?
(c) Let $A=\{1,2,3,4\}$ and $B=\{a, b, c, d\}$ and let function $f: \mathrm{A} \rightarrow \mathrm{B}$ be defined by $f=\{(1, \mathrm{a}),(2, \mathrm{a}),(3, \mathrm{~d}),(4, \mathrm{c})\}$. Show that f is a function but f^{-1} is not a function.
6. (a) If $f: A \rightarrow B$ and $g: B \rightarrow C$ be one one, onto functions, then gof is also one to one, onto.
(b) Using truth table show that
$[\sim q \wedge(p \rightarrow q)] \rightarrow \sim p$ is a tautology.
(c) Prove the logical equivalence of
$(p \vee q) \wedge \sim p \equiv \sim p \wedge q$
7. (a) Draw Venn Diagram for $(A \cap B) \cup C$
(b) If $\mathrm{A}=\{1,2,3,4,5,6,7\}$ and 4 $B=\{3,4, a, b, c, d\}$ Find A ΔB.
(c) If $\mathrm{f}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$ and $\mathrm{g}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right) \quad 6$

Find fg and gf .

