No. of Printed Pages : 4

CS-71

BACHELOR IN COMPUTER APPLICATIONS

4	Term-End Examination							
20	June, 2010							
CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES								
Time	e : 3 h	ours Maximum Marks : 75						
Note	e: Q qi qi	Question number 1 is compulsory . Attempt any three uestions from the rest. In total you have to answer four uestions. Calculator is allowed.						
1.	(a)	Write the following numbers in floating						
		point form : 6x5=30						
		48.61416, 2.3748, 0.0436, 1.03092.						
		Round these numbers to :						
•		(i) 4 significant digits,						
		(ii) 2 significant digits.						
	(b)	An approximate value of $\sqrt{2} = 1.414214 \cdots$						
		is given by 1.414. Find the absolute error and the relative error in the approximation.						
	(c)	Prove the following relations :						
		(i) $\Delta\left(\frac{1}{f_i}\right) = -\frac{\Delta f_i}{f_i f_{i+1}}$						
		(ii) $\Delta\left(f_i^2\right) = \left(f_i + f_{i+1}\right) \Delta f_i$						

1

CS-71

P.T.O.

(d) Solve the following equations by Jocobi's iteration method.

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 25$$

(e) Find the Lagrange interpolating polynomial that fits the following data values :

x	2.5	3.5
f(x)	6	8

Determine the approximate value of f (3).

- (f) Find the cube root of 41, using Newton Raphson Method.
- (a) Perform four iterations of the Gauss Seidal Method to solve the following system of equations : 3x5=15

$$4x - y + z = 4$$
$$-x + 4y - z = 2$$

x - y + 4z = 4.

Take initial approximation

 $(x_0, y_0, z_0) = (0, 0, 0).$

(b) Solve the following equations by

Gauss - Elimination Method :

$$54x + y + z = 110$$

$$2x + 15y + 6z = 72$$

$$-x + 6y + 27z = 85.$$

CS-71

2

(c) Construct the forward difference table for the data :

x	-4	-2	0	2	4	6
f(x)	-139	-21	1	23	141	451

Determine the corresponding interpolating polynomial. Also compute the approximate value of f (3).

3. (a)Solve the following equations by Jocobi's
method :3x5=15

2x + y + z = 10

3x + 2y + 3z = 18

x + 4y + 9z = 16.

(b) Find the Lagrange interpolating polynomial that fits the following data values :

x	1	2	4	
f(x)	1	7	61	

Determine the approximate value of f (3).

(c) Find a real root of the equation

 $x \log_{10} x = 1.2$

by Regular-Falsi method correct to four decimal places.

CS-71 3 P.T.O.

Using Runge - Kutta method of order 4, find 4. (a) 3x5=15 y (0.2) for the equation : $\frac{dy}{dx} = \frac{y-x}{y+x},$ y(0) = 1. Take h = 0.2. Perform three iterations of the Regula - Falsi (b) method to obtain the smallest positive root of : $x^3 - 5x + 1 = 0.$ (c) Evaluate : $\int_{0}^{2} \frac{x^2}{1+x^3}$ using, the Simpson's $\frac{1}{3}$ rule with $h = \frac{1}{4}$. 5. Find a root of the equation : (a) 3x5=15 $x^3 - 4x - 9 = 0$, using the Bisection methods in four stages. (b) Perform three iteration of the Newton - Raphson method to find a root of the equation : $x e^{x} - 1 = 0$, which is close to 0.5. (c) For the data : 1.11.2 1.3 1.4 1 x 7.0 8.093 9.384 10.891 12.632 f(x)find an approximation of f (1.35) and f (1.25).

CS-71

4