BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2010

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours
Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three questions from the rest. In total you have to answer four questions. Calculator is allowed.

1. (a) Write the following numbers in floating point form :
$6 \times 5=30$ 48.61416, 2.3748, 0.0436, 1.03092.

Round these numbers to :

- (i) 4 significant digits,
(ii) 2 significant digits.
(b) An approximate value of $\sqrt{2}=1.414214 \ldots$. is given by 1.414. Find the absolute error and the relative error in the approximation.
(c) Prove the following relations:
(i) $\Delta\left(\frac{1}{f_{i}}\right)=-\frac{\Delta f_{i}}{f_{i} f_{i+1}}$
(ii) $\Delta\left(f_{i}^{2}\right)=\left(f_{i}+f_{i+1}\right) \Delta f_{i}$
(d) Solve the following equations by Jocobi's iteration method.

$$
\begin{aligned}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

(e) Find the Lagrange interpolating polynomial that fits the following data values:

\boldsymbol{x}	2.5	3.5
$\boldsymbol{f}(\boldsymbol{x})$	6	8

Determine the approximate value of $f(3)$.
(f) Find the cube root of 41, using Newton - Raphson Method.
2. (a) Perform four iterations of the Gauss - Seidal Method to solve the following system of equations :

$$
\begin{aligned}
& 4 x-y+z=4 \\
& -x+4 y-z=2 \\
& x-y+4 z=4 .
\end{aligned}
$$

Take initial approximation
$\left(x_{0}, y_{0}, z_{0}\right)=(0,0,0)$.
(b) Solve the following equations by

Gauss - Elimination Method :

$$
\begin{aligned}
& 54 x+y+z=110 \\
& 2 x+15 y+6 z=72 \\
& -x+6 y+27 z=85 .
\end{aligned}
$$

(c) Construct the forward difference table for the data :

x	-4	-2	0	2	4	6
$f(x)$	-139	-21	1	23	141	451

Determine the corresponding interpolating polynomial. Also compute the approximate value of $f(3)$.
3. (a) Solve the following equations by Jocobi's method:
$3 \times 5=15$

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

(b) Find the Lagrange interpolating polynomial that fits the following data values :

\boldsymbol{x}	1	2	4
$f(x)$	1	7	61

Determine the approximate value of $f(3)$.
(c) Find a real root of the equation

$$
x \log _{10} x=1.2
$$

by Regular-Falsi method correct to four decimal places.
4. (a) Using Runge - Kutta method of order 4, find $y(0.2)$ for the equation :

$$
\frac{d y}{d x}=\frac{y-x}{y+x},
$$

$y(0)=1$. Take $h=0.2$.
(b) Perform three iterations of the Regula - Falsi method to obtain the smallest positive root of :

$$
x^{3}-5 x+1=0 .
$$

(c) Evaluate :

$$
\int_{0}^{2} \frac{x^{2}}{1+x^{3}} \text { using, }
$$

the Simpson's $\frac{1}{3}$ rule with $h=\frac{1}{4}$.
5. (a) Find a root of the equation : $3 \times 5=15$

$$
x^{3}-4 x-9=0,
$$

using the Bisection methods in four stages.
(b) Perform three iteration of the Newton - Raphson method to find a root of the equation :

$$
x e^{x}-1=0,
$$

which is close to 0.5 .
(c) For the data :

\boldsymbol{x}	1	1.1	1.2	1.3	1.4
$\boldsymbol{f}(x)$	7.0	8.093	9.384	10.891	12.632

find an approximation of $f(1.35)$ and f (1.25).

