No. of Printed Pages : 4

 \sim

22

12

CS-60

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination June, 2010

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time : 3 hours			Maximum Marks : 75
Note :		Question No. 1 is compulsory. Attempt any three questions from questions No. 2 to 6. Use of calculator is permitted.	
1.	(a)	Show that the function f	w that the function $f(x) = 3x - 1$; \Rightarrow R is one-one and onto 15x3=45
	(b)	Tell or fa	for each whether the statement is true
		(i)	R, the set of Real Numbers, is closed under addition operation.
		(ii)	In R, the operation of multiplication is not commutative
		(iii)	The relation '>' of 'greater than' in R is transitive.

1 ·

CS-60

P.T.O.

(c) The function :

 $f: \mathbb{R} \rightarrow \mathbb{R}$, defined as f(x) = 3x + 7 for all $x \in \mathbb{R}$ is one - one

(d) Find
$$\frac{dy}{dx}$$
 where $y=32+5x^3$

- (e) Evaluate $\int_4^5 8 x^3 dx$.
- (f) Prove that the points (4, 3), (7, -1) and (9, 3) are the vertices of an isosceles triangle.
- (g) Find the equation of a straight line which passes through the points (3, -5) (-3, 5).
- (h) Find the equation of a straight line which meets *x*-axis in (5, 0) and *y*-axis in (0, -3).
- (i) Find the equation of the parabola whose focus is the point (3, 4) and directrix is the straight line 2x 3y + 5 = 0.
- (j) Find the equation of a circle with radius 5 units and centre as (2, -3).
- (k) Find the coordinates of the vertices and the foci and the length of the latus rectum of the hyperbola $16x^2 9y^2 = 144$,
- (l) Solve the system of simultaneous equations : 2x + 6y = 15; 5x - 8y = 7
- (m) If V = [3, 5, 7, 8, 9, 11, 13, 15] A = [3, 5, 9, 13], B = [5, 7, 9, 13, 15]Find (i) $A \cup B$ (ii) $A \cap B$

CS-60

2

(n) Evaluate $\int 5x^2 dx$.

(o) Obtain
$$\frac{5+2i}{3-i}$$
 in the form of $a+ib$, a , $b \in \mathbb{R}$.

- 2. (a) Evaluate the integral 3+4+3 $\int (2x^2+3x^3) dx$ (b) Evaluate the integral $\int (2\sin x + e^x + 3\cos x) dx$
 - (c) Find the area of the region bounded by the curve $y = 5x x^2$, x = 0, x = 5 and lying above the *x*-axis.

3. (a) Find the equation of the circle circumscribing the triangle with vertices (1, 2), (-1, 4) and (3, 10). 4+3+3

(b) Find the equation of parabola with focus

(a, b) and directrix $\frac{x}{a} + \frac{y}{b} = 1$. Find the

equation of the axis.

(c) Find the standard equation of the hyperbola with eccentricity $\sqrt{2}$.

3

CS-60

- 4. (a) Find the equation of the plane which is perpendicular to the plane 5x+3y+6z+8=0 and which is contains the line of intersection of the planes x+2y+3z=4, 2x+y-z+5=0. 4+3+3
 - (b) Find the equation to the sphere through the circle $x^2 + y^2 + z^2 = 9$, 2x + 3y + 4z = 5 and the point (1, 2, 3).
 - (c) Find the equation to the cone whose vertex is origin and which passes through the curve given by $ax^2 + by^2 = 2z$, lx + my + nz = p.

5. (a) Prove that $A - B = A \cap B'$. 3+3+4

- (b) Solve the equation $x^2 4x + 1 = 0$.
- (c) Expand $\cos^6\theta \sin^6\theta$ in terms of the cosines of multiples of θ .
- 6. (a) Find the maxima and minima of the following function 4+3+3

 $f(x) = \sqrt{x} \quad \forall \ x \in [4, 16]$

(b) Find the equations of the tangent and the normal to the following function.

 $y = x^2 + 2x + 1$ at (1, 4)

(c) Trace the curve $(x^2-1)(y^2-4)=4$

CS-60

4