BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2010

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Note : Question No. 1 is compulsory. Attempt any three questions from questions No. 2 to 6. Use of calculator is permitted.

1. (a) Show that the function $f(x)=3 x-1$; $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ is one-one and onto. $\quad 15 \times 3=45$
(b) Tell for each whether the statement is true or false :
(i) R, the set of Real Numbers, is closed under addition operation.
(ii) In R, the operation of multiplication is not commutative
(iii) The relation ' $>$ ' of 'greater than' in R is transitive.
(c) The function:

$$
\begin{aligned}
& f: \mathrm{R} \rightarrow \mathrm{R} \text {, defined as } \\
& f(x)=3 x+7 \text { for all } x \in \mathrm{R}
\end{aligned}
$$

is one - one
(d) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ where $y=32+5 x^{3}$
(e) Evaluate $\int_{4}^{5} 8 x^{3} \mathrm{~d} x$.
(f) Prove that the points $(4,3),(7,-1)$ and $(9,3)$ are the vertices of an isosceles triangle.
(g) Find the equation of a straight line which passes through the points $(3,-5)(-3,5)$.
(h) Find the equation of a straight line which meets x-axis in $(5,0)$ and y-axis in $(0,-3)$.
(i) Find the equation of the parabola whose focus is the point $(3,4)$ and directrix is the straight line $2 x-3 y+5=0$.
(j) Find the equation of a circle with radius 5 units and centre as $(2,-3)$.
(k) Find the coordinates of the vertices and the foci and the length of the latus rectum of the hyperbola $16 x^{2}-9 y^{2}=144$.
(l) Solve the system of simultaneous equations: $2 x+6 y=15 ; 5 x-8 y=7$
(m) If $\mathrm{V}=[3,5,7,8,9,11,13,15]$ $A=[3,5,9,13], B=[5,7,9,13,15]$ Find (i) $A \cup B \quad$ (ii) $A \cap B$
(n) Evaluate $\int 5 x^{2} \mathrm{~d} x$.
(o) Obtain $\frac{5+2 i}{3-i}$ in the form of $a+i b, a, b \in R$.
2. (a) Evaluate the integral
$3+4+3$
$\int\left(2 x^{2}+3 x^{3}\right) d x$
(b) Evaluate the integral
$\int\left(2 \sin x+\mathrm{e}^{x}+3 \cos x\right) \mathrm{d} x$.
(c) Find the area of the region bounded by the curve $y=5 x-x^{2}, x=0, x=5$ and lying above the x-axis.
3. (a) Find the equation of the circle circumscribing the triangle with vertices $(1,2),(-1,4)$ and $(3,10)$. $4+3+3$
(b) Find the equation of parabola with focus (a, b) and directrix $\frac{x}{\mathrm{a}}+\frac{y}{\mathrm{~b}}=1$. Find the equation of the axis.
(c) Find the standard equation of the hyperbola with eccentricity $\sqrt{2}$.
4. (a) Find the equation of the plane which is perpendicular to the plane $5 x+3 y+6 z+8=0$ and which is contains the line of intersection of the planes $x+2 y+3 z=4,2 x+y-z+5=0 . \quad 4+3+3$
(b) Find the equation to the sphere through the circle $x^{2}+y^{2}+z^{2}=9,2 x+3 y+4 z=5$ and the point $(1,2,3)$.
(c) Find the equation to the cone whose vertex is origin and which passes through the curve given by $\mathrm{a} x^{2}+\mathrm{b} y^{2}=2 z, l x+\mathrm{m} y+\mathrm{n} z=\mathrm{p}$.
5. (a) Prove that $A-B=A \cap B^{\prime}$.
(b) Solve the equation $x^{2}-4 x+1=0$.
(c) Expand $\cos ^{6} \theta-\sin ^{6} \theta$ in terms of the cosines of multiples of θ.
6. (a) Find the maxima and minima of the following function

$$
f(x)=\sqrt{x} \quad \forall x \in[4,16]
$$

(b) Find the equations of the tangent and the normal to the following function.

$$
y=x^{2}+2 x+1 \text { at }(1,4)
$$

(c) Trace the curve $\left(x^{2}-1\right)\left(y^{2}-4\right)=4$

