No. of Printed Pages : 3 CST-103		
Advanced Diploma in Information Technology (ADIT) / Bachelor in Information Technology (BIT)		
 ∞ Term-End Examination M June, 2010 		Term-End Examination June, 2010
CST-103 : DATA STRUCTURES AND ALGORITHMS		
Time	e : 2 ho	ours Maximum Marks : 50
Not	e: T se fr	here are two sections in this paper. All questions in ection-A are compulsory. Answer any two questions om section-B.
		SECTION - A
1.	State	e <i>True / False</i> for the following statements : 5x1=5
	(a)	Stacks follow FIFO principle
	(b)	Circularly linked lists occupy larger memory than singly linked lists
	(c)	The process of execution of a recursive algorithm leads to the creation of a stack
	(d)	BFS can be performed only on diagraphs
	(e)	The time complexity of a Quicksort algorithm is O (n log n)

CST-103 1

P.T.O.

- What datastructure is suitable to represent a 8
 Matrix ? Justify your answer with example.
- **3.** (a) Using a stack, convert the following infix expression into prefix expression :

6

7

((a*b)/(c+d)) + (e*f)

(b) Write an algorithm for implementation of a Queue.

2

SECTION - B

Answer any two questions from this section :

- 4. (a) Write an algorithm to implement Bubble sort 6
 - (b) Sort the following list of elements using insertion sort or quick sort. Clearly showing steps of execution. 10, 2, 15, 3, 26, 5, 32, 8.

6

6

6

6

- 5. (a) Write algorithms for preorder, inorder and 6 postorder traversals of a Binary Tree.
 - (b) Convert the following tree to Binary tree :

6.

(a)

(b)

Write the algorithm for DFS. Traverse the following graph using BFS :

3

CST-103