No. of Printed Pages : 3

MANAGEMENT PROGRAMME

Term-End Examination

June, 2010

MS-8 : QUANTITATIVE ANALYSIS FOR MANAGERIAL APPLICATIONS

Time : 3 hours

Maximum Marks : 100 (Weightage 70%)

Note :

 \sim

2181

(*i*) Section-A has six questions, each carrying 15 marks. Attempt any four questions from this section.

(ii) Section-B is compulsory and carries 40 marks. Attempt both questions.

(iii) Statistical tables may be supplied on request.

SECTION-A

- A car is purchased for Rs. 300,000. If the depreciation for the first three years is at 10% 15 per annum and for the next two years is at 20% per annum, then calculate the depreciated value of the car at the end of five years.
- Units A, B, C of a factory manufacture 25%, 35%, 40% respectively of the total cars. 15 Out of their output, 5%, 4%, 2% defective cars came from the units A, B, C respectively. Using Baye's Theorem or otherwise, find the probability that a randomly selected car found defective has come from the unit A.
- **3.** Explain the term Random variable associated with an Experiment. Thereafter distinguish **15** between discrete and continuous probability distributions also mentioning two discrete and two continuous distributions.

P.T.O.

MS-8

1

4. Compute the Quartile Q₃, Decile D₅, Percentile P₅₀ and interpret these values in lines 15 1-3 for the grouped data showing profits of 100 companies in a year in the table given below :

Profit in lakh Rupees	Number of Companies +		
20-30	20		
30-40	10		
40-50	15		
50 - 60	15		
60 - 70	40		

- 5. The breaking strength X of cables in a factory has a normal distribution with a mean of $\mu = 1800$ lbs and a standard deviation of $\sigma = 100$ lbs. It is claimed that the breaking strength X can be increased by the introduction of a new technique in the manufacturing process. Should we accept the claim on the basis of a sample of 50 cables manufactured under the new technique; at a significance level of $\alpha = .05$ given that the mean breaking strength for the sample is $\overline{X} = 1850$ with the standard deviation remaining the same. (For convenience, we are giving the result P (Z \le 1.645) = .95 where Z has the standard normal distribution N (0,1)).
- 6. Write short notes on *any three* of the following topics :
 - (a) Primary and secondary data
 - (b) Arithmetic Mean and Median of data
 - (c) Sample space associated with an experiment
 - (d) Linear function
 - (e) Sampling with and without replacement explaining them, mentioning their scope, drawing graphs and giving examples wherever possible.

15

SECTION-B

7. Using the method of least squares, find the regression equation of *y* on *x* for the data **20** given in the Table below :

x	1	2	3	4	5
y	5	7	9	10	11

And from the regression equation obtained, find the value of y corresponding to x = 2.5.

20

8. Solve the system of non-homogeneous linear equations :

$$-x_1 + x_2 + 2 x_3 = 2$$

$$3 x_1 - x_2 + x_3 = 6$$

$$-x_1 + 3 x_2 + 4 x_3 = 4$$

by any one method out of cramar's rule, Inverse Matrix method, Gauss-Jordan method.