POST GRADUATE DIPLOMA IN CLINICAL CARDIOLOGY (PGDCC)

Term-End Examination

00096

December, 2011

MCC-002: FUNDAMENTALS OF CARDIOVASCULAR SYSTEM - II

Time: 2 hours

Maximum Marks: 60

Note:

- (i) There will be multiple choice type of questions in this examination which are to be answered in OMR Answer Sheets.
- (ii) All questions are compulsory.
- (iii) Each question will have four options and only **one** of them is correct. Answers have to be marked in figures in the appropriate rectangular boxes corresponding to what is the correct answer and then blacken the circle for the same number in that column by using HB or lead pencil and not by ball pen in OMR Answer Sheets.
- (iv) If any candidate marks more than one option, it will be taken as the wrong answer and no marks will be awarded for this.
- (v) Erase completely any error or unintended marks.
- (vi) There will be 90 questions in this paper and each question carries equal marks.
- (vii) There will be no negative marking for wrong answers.
- (viii) No candidate shall leave the examination hall at least for one hour after the commencement of the examination.

ı.	VVII	iich one is closest to	Pulmonary i	wedge c	apilla	ry pressure in i	normal p	person?	
	(1)	RA mean					•		
	(2)	LA mean							
	(3)	LVEDP-CLV End	d diastolic pre	ssure					
	(4)	PA mean	•						
2 .	A s	tep up of > 7% at a	trial level ind	icates si	gnific	cant :			
	(1)	Pretricuspid shu	nt	(2)	Pos	st tricuspid shu	nt		
	(3)	Normal finding		(4)		ne of the above		A.	
		f							
3.	Wh tiss	ich of the followirue?	ng frequency	transdi	aces v	will have maxi	mum pe	enetration th	ırough
	(1)	3.5 MHz		(2).	7 _N	ИHz			
	(3)	4.5 MHz		(4)	All	have equal cap	pacity		• *
4.	Wh	ich frequency trans	ducer will vo	u prefer	while	e doing Echo ir	n a 4 mo	nthe old hab	w 2
	(1)	3.5 MHz	, , , , , , , , , , , , , , , , , , , ,	(2)				idis old bub	у.
	(3)	4.5 MHz		(4)		have equal cap	acity		
				, ,			,		
5.	Wh	at is the colour of I	Ooppler when	blood i	s flow	ving towards tr	ansduce	r ?	
	(1)		(2) Yellow		(3)	Blue	(4)	Mosaic	
6.	Whi	ich Doppler is bette	r for low velo	city floy	w ?				
	(1)	Continuous wave		(2)		se wave			
	(3)	Colour Doppler		(4)		of the above			
				(-)	9				
7.	The	way to assess RV s	ystolic or PA	systolic	press	ure will be ('V'	denotes	TR velocity)	١.
	(1)	$4V^2 + 10 \text{ mm of } F$	Ig	(2)		+8 mm of Hg			, •
	(3)	$2V^2 + 6$ mm of Hg	3			-10 mm of Hg			
8.	E-wa	ave deaccleratic tim	ne (DT) of < 1	60 mm i	ie e110	gestive of :			
	(1)	Diastolic Dysfund				olic Dysfunctio	vn.		
	(3)	Restrictive filling		(4)		mal finding			
	,			(*)	1401	mai mang			
9.	Isch	aemic Heart Disea	se IHD impa	irs syst	olic tl	hickening of L	V before		ges i e
	thick	kening is less than t	he following	compar	ed to	diastolic dimen	sions :	1, r	3
	(1)		(2) < 1.5 times			< 2 times		< 0.5 times	

10.	Dom	inance of Coron	ary Ar	tery in deci	ded h	g by L	eff or Right Co	oronary	origin of
	(1)	PDA	(2)	ОМ		(3)	PLV	(4)	Diagonal
11.	Whe	n do we invaria	bly nee	ed to interv	ene if	on Co	ronary Angiog	raphy s	tenosis is:
	(1)	> 50%	(2)	> 30%		(3)	> 60%	(4)	> 70%
	` ,							~**	
12.	Whic	ch is not true of	Pseud	o Aneurysn	n of L	V ?		.ur	
	(1)	Narrow neck			(2)		e common in i	nj. wall	
	(3)	Due to Myoca	rdial P	erforation	(4)	Wall	is forced by m	iyocardi	ium ,
13.	Dop calle		cut of	f and freque	ency sl	hift red	corded on the o	pposite	side of base time i
	. (1)	Nyquist Limit		-ô	(2)	Alia	sing		
	(3)	Anti frequenc	y		(4)	Non	e of the above		
14.	Max	imum measura	ble velo	ocity by pul	se wa	ve is :			
	(1)	< 2 m/s	(2)	< 3 m/s		(3)	< 5 m/s	(4)	< 9 m/s
15.	Con	itinuous wave L	Ooppler	is able to r	neasu	re velo	ocity:		
	(1)	< 15 m/s	(2)	< 9 m/s	٠	(3)	8 m/s	(4)	7 m/s
16.	If I'	VC diameter or ssure is approxi	expira mately	ation is > 2	cm v	vith le	ss then 20% co	ollapse	on inspiration : R
	(1)	10 - 15 mm	(2)	10 - 20 n	nm	(3)	5 - 10 mm	(4)	> 20 mm
17.	Wh	ich is the most	specific	e Echo card	iograp	hic sig	gn of cardiac ta	mpona	de ?
	(1)	Early diastoli			<u> </u>			,>.	
	(2)	Late diastolic							
	(3)	Abnormal se							
	(4)	Dilated Ive >	-		ration	collap	ose		
	(#)	22 222 24 2 2 3		.1		•	4.		

18.	Wł	nich is the most sens	sitive sign of	cardiac	tampo	onade ?		,
	(1)	Early diastolic co	ollapse of RV					
	(2)	Late Diastolic RA	A collapse					
	(3)	Abnormal septal	motion					
	(4)	Dilated Ive > 2 cr	m. e' < 50% i	inspirati	on col	lapse		
19.	Cor	npared to pleural e	ffusions peri	cardial e	effusio	n:		
	(1)	Ends Anterior to	descending	Aorta				
	(2)	Never over laps I	Left Atrium					
	(3),	May develop sigr	ns of tampon	ade				×
	(4)	All of the above						
20.	Wh	ich one of the follow	ving is the m	ost diag	nostic	sign of Rheuma	atic Hea	art Disease?
	(1)	Restricted PML	1 to			. 1 %		
	(2)	Thickened cusps						•
	(3)	Thickened Papilla	ary Muscles a	and cho	rdae			
	(4)	Prolapse of AML						
21.		a contract a of > 6 n	nm is sign of	f:				
	(1)	Severe MS ((2) Severe	MR	(3)	MS + MR	(4)	MILD MR
		· · · · · · · · · · · · · · · · · · ·						
22.		`- (Pressure half tim	ne) of > 220 n	nm is su	ggesti	ve of :		
	(1)	Severe MS		(2)	Mod	lerate MS		
	(3)	Mild MS		(4)	Non	e of the above		
			;					
23.		patient with mitral	stenosis the s	stenosis	is seve	ere if resting me	an PG	is more than :
	(1)	5 mm Hg (2	2) 7.5 mm	Hg	(3)	10 mm Hg	(4)	15 mm Hg
			· 1					
24.		ch of the following i						•
	(1)	Mid systolic hamm						
	(2)	Never to be assessed						
	(3)	Eccentric MR jet as	way from pr	olapsed	leafle	t		
	(4)	All the above				•		

25.	A patient with Aortic stenosis and in dysfunction; best way to judge Aortic valve Area is:										
	(1)	Planimetry							•		
	(2)	AV gradient							i		
	(3)	AVA calculatio	n by c	ontinuity Ed	quatic	n			† ·		
	(4)	Any of the above	ve						Ž		
26.	Wha	t is the mean PG	acros	s Aortic valv	ve to	call it	severe as with r	ormal	LV function?		
	(1)	> 25 mm Hg	(2)	> 30 mm F	łg	(3)	> 40 mm Hg	(4)	¹⁵ > 50 mm Hg		
27.	In a	patient with seve	ere AF	R CW across	jet sh	ows I	PHT (pressure h	alf tim	e):		
	(1)	> 50 mm	(2)	250 - 500 r	nm	(3)	250 mm	(4)	> 750 msec		
28.	In al	osence of TR we	diagno	se tricuspid	sten	osis if	mean PG across	TV is	:		
	(1)	> 2.5 mm Hg	(2)	2 - 2.5 mm	Hg	(3)	< 2 mm Hg	(4)	< 1 mm Hg		
29.	Orga	Organic TR is caused by :									
	(1)	Trauma	(2)	Carcinoid		(3)	SBE	(4)	All the above		
30.	Mor	phological featu	re of t	ricuspid valv	ve inc	ludes	all except :	1			
	(1)	Septal chordal	attacl	nment	(2)	Two	leaflect				
	(3)	Triangular orif	ice		(4)	Mor	e than two papi	illary r	nuscles		
31.	Moi	phological chara	cterist	ics of LV inc	clude	s all o	f the following e	except	;		
	(1)	Smooth septal	surfac	ce	(2)	Fine	trabeculation				
	(3)	Higher attachr					Aortic infundib	ulum			
32.	Gre	at vessels are rec	ognise	ed by:		+ N					
	(1)	Their origion f	rom v	entricle	(2)	Sen	nilunar valve mo	orpholo	ogy		
	(3)	Branching pat	tern		(4)	Vel	ocity of flow				
33.	Vis	cueral simtus is o	lecide	d by :							
	(1)	Suprasternal v	view		(2)	Par	asternal long Ax	cis Vie	w		
	(3)) Subcostal coronal view					

34.	Best	view of diagnose	e ASD	is by:						
	(1)	Subcostal view			(2)	Para	sternal view			
	(3)	Apical 4 - chan	nber		(4)	Sup	ra sternal viev	V		
35.	PAF	VE of Right Puln	nonar	y veins are	most (comm	only associate	d with :		
	(1)	Fossa ovalis AS			(2)		um primum A			
	(3)	Sinus venosus o	defect		(4)	coro	nary sinus AS	SD		
36.	Whi	ch type of USD is	s mos	t commonly	y assoc	riated	with AR due	to Aortic	value prolapse	e ?
	(1)	Perimeubranou			(2)		pulmonic VSI			
	(3)	Inlet VSD			(4)	Mus	cular VSD			
37 .	Stra	ddling of Triuspic	d valv	e is feature	of:		110			
	(1)	Perimembranou	ıs VSI)	(2)	Inlet	VSD			
	(3)	Muscular VSD			(4)	Outl	et VSD			
					• "					
38.	Higl	nest Rate of spont	taneou	us closure i	s seen	with :				
	(1)	Perimembrous	VSD		(2)	Inlet	VSD			
	(3)	Doubly commit	ted V	SD	(4)	Mus	cular VSD			
		1.4.4								
39.	Whi	ch type of ASD c	an be	cleared by	Device	e ?				
	(1)	Fossa avalis AS			(2)	Cord	onary sinus A	SD		
	(3)	Sinus Venerus A	ASD		(4)	Osti	um primum A	ASD		
40.	Higl	n parasternal viev	v is us	seful to pro	file :					
	(1)	ASD	(2)	VSD		(3)	PDA	(4)	Aortic valve	
									e e e e e e	
41.	PA s	systolic pressure i	may b	e estimated	l from	:			** ;	
	(1)	TR jet	(2)	MR jet		(3)	PR jet	(4)	AR jet	
42.	Com	nmonest Acqanoti	ic CH	D is :						
	(1)	ASD			(2)	VSD)			
	(3)	PDA			(4)		spid Aortic va	alve		
	` /				(/		1			

43.	Whic	ch of the following is not an indi	cation f	or Balloon Aortic valve 10 plasty?	
	(1)	Peak systolic gradient ≥ 6 in			
	(2)	Systolic gradient 50 - 64 with sy	mptom	ns	
	(3)	Low cardiac output regardless	of grad	ients	
	(4)	None of the above			
44.	Whi	ch of the following is called Roge	r's Def	ect ?	
	(1)	Small ASD	(2)	Small PDA	
	(3)	Restrictive small VSD	(4)	Co-arctation of Aorta	
4 5.	Com	nmon art associated lesion of VSD) is :		
	(1)	ASD	(2)	PDA	
	(3)	Co-arctation of Aorta	(4)	Bicuspid Aortic valve	, .
	_		,	10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (
46.		olumic relaxation phase of cardia			•
	(1)	Peak of 'C' waves	(2)	Opening of A.V. valve	
	(3)	Closure of semilunar valve	(4)	Beginning of 'T' waves	7
47.	'C' v	vaves in JVP is due to :			ē.
	(1)	Atrial contraction	(2)	Tricuspid valve Bulging in RA	
	(3)	Right Atrial filling	(4)	Rapid ventricular filling	1 ³ .
				$= -\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) \right)}{1} \right) \right) \right)} \right) \right) \right) \right) \right) \right) \right)} \right) \right) \right)} \right) \right) } \right) } \right) } \right) } \right) } \right) } } \right) } } \right) } } \right) } } } \right) } } \right) } } } \right) } } } \right) } } } }$	}
48.	All	of following heart sounds occur s	hortly	after S ₂ except :	
	(1)	Opening snap	(2)	Pericardial knock	
	(3)	Ejection click	(4)	Tumour plop	
49.	Puls	sus paradoxus is seen in all excep	t:		•
	(1)	IPPV	(2)	COPD	*
	(3)	Cardiac tamponade	(4)	Constrictive peri carditis	
50.	Puls	sus Bisferiens is best felt in :		en e	F
	(1)	Carotid artery	(2)	Brachial artery	
	(3)	Radial artery	(4)	Femoral artery	
MC	C-002	2	7		P.T.O.

MCC-002

51.	Nor	mal PCWP with pulmonary Eden	na is se	en in :					
	(1)	Left atrial myxoma	(2)	High altitude					
	(3)	Pulmonary vein obstruction	(4)	Pulmonary artery obstruction					
52.	QRS	6 complex indicates :							
	(1)	Atrial Repolarisation	(2)	Atrial Depolarisation ,					
	(3)	Ventricular Repolarisation	(4)	Ventricular Depolarisation					
53.	All a	are ECG findings in WPW - synd	rome, e	except :					
	(1)	Narrow QRS complexes	(2)	Normal QT Interval					
	(3)	Scarred and Tall QRS	(4)	Short PR interval					
54.		atient with wide complex tachycar tricular tachycardia, except:	dia, the	e presence of all of the following in ECG indicates					
	(1)	A - V dissociation	(2)	Fusion beats					
	(3)	Typical RBBB	(4)	Capture Beats					
55.	All	of the following are ECG features	of sev	ere hyperkalaemia, except :					
	(1)	Peaked T waves	(2)	Presence of 'U' waves					
	(3)	Sine waves pattern	(4)	loss of 'P' waves					
56.	Exte	ernal cardiac massage is given at	least at	the rate of :					
	(1)	100/mt (2) 50/mt		(3) 80/mt (4) 40/mt					
57.	Earl	liest manifestation in the fatty stre	eak of a	atherosclerosis is :					
	(1)	Collection of lipid in endothelia	ıl cells						
	(2)	Collection of lipid in smooth m	uscles						
	(3)	Endothelial cell damage							
	(4)	None of above							
58.	The	Dicrotic notch of Aortic pressure	curve	is caused by :					
	(1)	Closure of Pulmonary valve	(2)	Rapid filling of LV					
	(3)	Closure of Aortic valve	(4)	Contraction of Atria					

MCC	C-002				9					P.T.O.
	(1)	5 mm	(2)	1 mmí		(3)	0.5 mm	(4)	0.1 mm	
67.	CAG	can visualize v	essels v	with lumen	upto :				· ·	
	(1)	Anterior MI	(2)	Posterior 1	MI	(3)	Inferior MI	(4)	Septal MI	
66.	Syste	emic and pulmo	nary er	nbolism tog	gether	can b	e seen in :			
	(1)	CPK	(2)	LDH		(3)	Troponin	(4)	SGPT	
65.	-	me earliest to r	ise in M	11 :						
6 -	· ·									
	(1)	1.5 cm ₂	(2)	1 cm ₂		(3)	0.6 cm ₂	(4)	0.3 cm ₂	
64.	Area	of Aortic valve	e orifice	to be called	d critic	al, sh	ould be less tha	an :		•.1.3
	(3)	Calcification o	of valve		(4)	A ₂ -	OS gap			
٦	(1)	Left atrial Enl	Ü		(2)	Lou	dness of S ₁			
63.		erity of MS is ass	sessed b	y :						
	` ,						,			
	(4)	Chromic Rhei			641616	•		*		
	(3)	Non thrombo			arditis					
	(2)	Libman Sach'								
	(1)	Acute Rheum			varves	are r	ound in .			
62.	Veg	etations on und	ersurfac	re of A - V	valves	are f	ound in :			
	(3)	sinus venosus	type		(4)	end	ocardial cushic	on defec	ts	
	(1)	ostium primu	m		(2)	osti	um secundum			
61.	Mos	t common type	of ASE) is :	•					
	(1)	Class I	(2)	Class II	· ·	(3)	Class III	(4)	Class IV	
60.	Vera	apemil belongs	to whic	ch class of a	nti ass	sythm	ic drugs :			,
	(1)	400/mt	(2)	800/mt		(3)	82/mt	(4)	200/mt	
59.	be:	n Atrial flutter			the At			en the v	entricular i	rate shall

P.T.O.

68.	Left ventriculography is useful in the assessment of the following except:											
	(1)	Segmental and	global	left ventric	rular f	unctic	on					
	(2)	Mitral valve reg	urgita	ition			•					
	(3)	Aortic regurgita	ition		4							
	(4)	Hypertrophic ca	ardior	nyopathy								
69.	Best	test for Myocard	ial via	bility :								
	(1)	Stress thallium	(2)	Cardiac N	MRD	(3)	CAG	(4)	Echo			
70.	Con	nmonest Arrythm	ia enc	ountered in	n Digi	-toxic	ity:					
	(1)	CHB	(2)	AF		(3)	Bigeminy	(4)	PSVT			
							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		•			
71 .	In B	enign HTN comm	nones	t vascular p	atholo			•				
	(1)	Atherosclerosis			(2)		y infiltration of :					
1	(3)	Fibrinoid necros	sis		(4)	Нуа	illine arterioscler	osis				
72.	Con	duction velocity i	s max	dimum in :								
	(1)	Purkinje fibers			(2)	Bun	idle of his					
	(3)	SA node	•		(4)	ΑV	Bundle					
73.	Firs	t symptom of Dig	oxin o	over dose is	:				#			
	(1)	GI disturbance		. •	(2)	U -	waves of ECG	,				
	(3)	Ectopics on EC	G		(4)	Fair	nting spell					
74.	Fibr	ous scar in MI is	well e	stablished l	эу:			,				
	(1)	6 wks	(2)	6 moths		(3)	6 days	(4)	30 days			
75.	Wha	at is called as 'wie	dow's	artery':								
	(1)	RCA			(2)	LA	D .					
	(3)	Internal mamm	ary a	rtery	(4)	Fen	noral artery		¥ . A.			
	. ,											

76.	Bes	Best semi quantitative assessment of RV function is:											
	(1)	Pulmonary va	lve mo	vement									
	(2)	Tricuspid ann	ulus m	ovement									
	(3)	Pulmonary do	ppler f	low assessi	ment								
	(4)	RA dilatation											
77.	Wh	ich of following	structe:	s are poorly	/ visua	alised	by TEE ?						
	(1)	Mitral valve	(2)	Aortic va	lve	(3)	Left Atrium	(4)	LV Apex				
78.	Тур	pical frequency pr	roduce	d by an ech	no is :								
	(1)	1 MHz	(2)	2.5 MHz	1	(3)	5 MHz	(4)	20 MHz				
79.	Am	iodasone	a	ll are true,	excep	ot.							
	(1)	40% Iodine					rs.						
	(2)	Potentiate effec	cts of I	Digoxin									
	(3)	Corneal deposi	its are	usually rev	ercible	9							
	(4)	Prolong platue	phase	of action p	otenti	ial		•					
80.	Follo	Following improve survival figure in Chronic Heart failure, except:											
	(1)	Bisoprolol	(2)	Atenolol		(3)	Metoprolol	(4)	Spironolactone				
81.	The	following cardia	c lesioi	ns are consi	idered	high:	risk of IE, excer	ot:					
	(1)	VSD			(2)	HOO							
	(3)	Combined mitr	al valv	e disease	` ,	MS							
82.	LVH	l is commonly se	en witl	h :			· ·						
	(1)	Pure mitral ster			(2)	ASĎ	with fossa ova	lis					
	(3)	Aortic incompe	etence		(4)		inoid syndrome	_					
83.	Osle	r's nodes are see	n at :										
	(1)	Heart			(2)	Knee	: it.						
	(3)	Tip of palm and sole		(4)	,								
		• • • • • • • • • • • • • • • • • • •			\ "J	-, - America abdominiai wan							

84.	Current of injury is: (1) P - wave (2) ST. segme	nt	(3)	QRS complex	(4)	QT -	interval		
85.	Rock	's traid of cardiac tamp	oonade inclu	ıdes a	ıll exc	cept:			
00.	(1)	Hypotension		(2)		k vein distension	l		
	. ,	Paradoxical pulse		(4)		nt heart			
	(3)	raradoxical pulse		(-)					
86.	Rapi	id X descent is unlikely	in:						
	(1)	Constrictive pericard	itis	(2)	Car	diac tamponade		•	
	(3)	RV - MI		(4)	Res	trictive cardiomy	opath	y	
87.	In se	evere Aortic stenosis, ti	rue finding i	s:					
	(1)	Late systolic ejection	click	(2)	Нур	perkinetic and o	utward	l Ape	×
	(3)	ST - segment deviation	on in EKG	(4)	Lou	id S ₂			
88.	Digi	ital clubbing is seen in	all except :						
	(1)	Endocarditis		(2)	Pul	monary AV. fist	ula		
	(3)	Tricuspid atresia		(4)	Ao	rtic dissection			
89.	Tro	p - I is preffered over (CK-MB in ac	ute M	II, in	all except :		•	
	(1)	Bed side diagnosis o	f MI	(2)	Aft	er CABG			
	(3)	Re-Infarction		(4)	Sm	all Infarcts			
90.	Per	ipheral Edema in CHF	is due to :						
	(1)	atrial natriuretic per	otide	(2)	Pu	lmonary Hypert	ension		
	(3)	Increased hydrostat		(4)	De	creased sympatl	netic to	one	
,	` '								