M.Sc. ACTUARIAL SCIENCE

Term-End Examination

December, 2011

MIA-010 (F2F) : STATISTICAL METHOD

Time : 3 hours

Maximum Marks : 100

SECTION - A

Attempt any five questions.

1. You are using simulation to find the mean and variance of a random variable that has the density function.

$$
\mathrm{f} x(x)=\frac{k}{1+\mathrm{e}^{-x}}>-1<x<1
$$

(a) Determine the value of the constant k. 2
(b) Generate five pseudo - random values from 3 this distribution based on the $u(0,1)$ values $0.017,0.757,0.848,0.531$ and 0.321
(c) You have generated 1000 such numbers and found that $\Sigma x=165.681$ and $\Sigma x^{2}=339.275$.

Use these statistics to find a 95\% confidence interval for the mean of the distribution and a point estimate for the standard deviation.
2. The total claim arising from certain portfolio of insurance policies over a given month is represented by :
$S=\left\{\begin{array}{ccc}\Sigma x_{i} & \text { if } & \mathrm{N}>0 \\ 0 & \text { if } & \mathrm{N}=0\end{array}\right.$
where N has a poisson distribution with mean 2 and $X_{1}, X_{2}, \ldots X_{N}$ is a sequence of iid random variables that are also independent of N .

The distribution function of x such that

$$
\mathrm{P}\left(x_{\mathrm{i}}=1\right)=\frac{1}{3} \text { and } \mathrm{P}\left(x_{\mathrm{i}}=2\right)=\frac{2}{3}
$$

$$
\text { For every } \mathrm{i}=1-\mathrm{N}
$$

An aggregate reinsurance contract has been arranged such that the amount paid by the reinsurer is $S-3$ (if $S>3$) and zero otherwise. The aggregate claim paid by the direct insurer and reinsurer are denoted by S_{I} and S_{R} respectively calculate $\mathrm{E}\left(\mathrm{S}_{\mathrm{I}}\right)$ and $\mathrm{E}\left(\mathrm{S}_{\mathrm{R}}\right)$.
3. The number of claims on a portfolio of washing machine insurance policies follows a poisson distribution with parameter 50 . Individual claim amounts for repair is a random variable 100 x where x has a distribution with probability density function:
$f x(x)=\left\{\begin{array}{cc}\frac{3}{32}\left(6 x-x^{2}-5\right) ; & 1<x<5 \\ 0 & ; \text { otherwise }\end{array}\right.$
In addition for each claim [(independent) of the cost of the repair] there is a 30% chance that an additional fixed amount of Rs. 200 will be payable in respect of water damage
(a) Calculate the mean and variance of the total individual claim amounts.
(b) Calculate the mean and variance of the aggregate claims on the portfolio.
4. (a) Claims occur on a portfolio of insurance 4 policies according to a poisson process at a rate λ. All claims are for a fixed amount d and premium are received continuously. The insurer initial surplus is $u(<d)$ and the annual premium income is $1.2 \lambda \mathrm{~d}$. Show that the probability that ruin occurs at the first claim is :

$$
1-\mathrm{e}^{\frac{-1}{1.2}\left(1-\frac{\mathrm{u}}{\mathrm{~d}}\right)}
$$

(b) The number of claims in a year from individual policies in a portfolio is believed to follow a poisson (λ) distribution. A Gamma $(5,2)$ distribution is chosen as a prior distribution for λ. A random sample of 10 policies is observed, and the numbers of claims are found to be as follows :
$4,1,0,0,2,0,0,1,3,1$

Derive the posterior distribution for λ and obtain a point estimate for λ :

Using a zero - one loss function.
5. An insurer insures a single building. The probability of a claim on a given day is p independently from day to day. Premiums of 1 unit are payable on a daily basis at the start of each day. The claim size is independent of the time of the claim and follows an exponential distribution with mean $\frac{1}{\lambda}$. The insurer has a surplus of u at time zero.
(a) Derive an expression for the probability that the first claim results in the ruin of the insurer.
(b) If $\mathrm{p}=0.01$ and $\lambda=0.0125$ find how large U must be so that probability that the first claim causes ruin is less than 1%.
6. The Gamma distribution with mean μ and variance μ^{2} / α has density function :

$$
f y(y)=\frac{\alpha^{\alpha} y^{\alpha-1} \mathrm{e}^{-\frac{\alpha}{\mu} \cdot y}}{\mu^{\alpha} \sqrt{\alpha}} ; y>0
$$

(a) Show that this may be written in the form of an exponential family.
(b) Use the properties of exponential families to confirm that the mean and variance of the distribution are μ and $\frac{\mu^{2}}{\alpha}$.
7. The aggregate claims from a portfolio of insurance policies are $x_{1}, x_{2}, \ldots x_{\mathrm{n}}$ for the year $1,2, \ldots n$ respectively. The aggregate claim x_{n+1} for the year $\mathrm{n}+1$ has to be estimated. It is known that given a fixed value of the random parameter θ, the claims $x_{1}, x_{2}, \ldots x_{n+1}$ are conditionally independent and normally distributed with mean θ and variance θ^{2}. The prior distribution of the parameter θ is exponential with mean μ.
(a) Obtain the unconditional mean of $x_{\mathrm{n}+1}$. 1
(b) Obtain the unconditional variance of $x_{\mathrm{n}+1} \cdot \quad 2$
(c) Find an estimate of θ which is a linear function of $x_{1}, x_{2}, \ldots x_{\mathrm{n}}$ and μ and minimizes 5 the mean squared difference between θ and the linear estimate.

SECTION - B

Attempt any four questions.
8. (a) Consider the time series model
$Y_{t}=Y_{t-1}+0.5 Y_{t-2}-0.5 Y_{t-3}+Z_{t}+0.3 Z_{t-1}$ Where $\left\{Z_{t}\right\}$ is a sequence of uncorrelated random variables each having the normal distribution with mean zero and variance σ^{2}.
(i) Show that the above model is a special case of the ARIMA (p, d, q) model and determine $\mathrm{p}, \mathrm{d}, \mathrm{q}$.
(ii) Let $X=(1-B)^{d} Y$. Determine whether $\left\{X_{t}\right\}$ is a stationary time series.
(iii) Calculate the autocorrelation function 6 of $\left\{X_{t}\right\}$.
(b) Consider the stationary autoregressive process of order 1 which is given by :
$\mathrm{Y}_{\mathrm{t}}=\alpha \mathrm{Y}_{\mathrm{t}-1}+\mathrm{Zt} \quad ; 1 \alpha 1<1$
Where $\{Z t\}$ denotes white noise process with mean zero and variance σ^{2} express Y_{t} in the form of :

$$
Y_{t}=\sum_{i=0}^{\infty} \alpha j Z_{t-i}
$$

and hence or otherwise find an expression for $\operatorname{var}\left(\mathrm{Y}_{\mathrm{t}}\right)$. The process variance in terms of α and $\boldsymbol{\sigma}^{2}$.
9. (a) The general form of a run - off triangle can 5 be expressed as :

Accident year	Development Year					
	0	1	2	3	4	5
0	C0,0	C 0, 1	C 0, 2	C 0,3	C 0, 4	C 0, 5
1	C 1,0	C 1, 1	C 1,2	C 1,3	C 1, 4	
2	C 2,0	C 2, 1	C 2,2	C 2,3		
3	C 3,0	C 3, 1	C 3, 2			
4	C4,0	C 4, 1				
5	C 5,0					

Define a model for each entry $C_{i j}$, in general terms and explain each element of the formula.
(b) The run - off triangle given below relates to
a portfolio of motorcycle insurance policies. The cost of claims paid during each year is given in the table below :
(figures in Rs. 000)

(Dy)	Development Year			
	0	1	2	3
2002	2905	535	199	56
2003	3315	578	159	
2004	3814	693		
2005	4723			

The corresponding number of settled claims is as follows:

Accident year	Development Year			
	0	1	2	3
2002	430	51	24	7
2003	465	58	24	
2004	501	59		
2005	539			

Calculate the outstanding claims reserve for this portfolio using the average cost per claim method with grossing - up factors and state the assumptions underlying your result.
10. (a) The loss function under a decision problem is given by :

	θ_{1}	θ_{2}	θ_{3}
D_{1}	11	9	19
D_{2}	10	13	17
D_{3}	7	13	10
D_{4}	16	5	13

(i) State which decision can be 2 discounted immediately and why?

(ii) Explain what is meant by minimax criterion and determine the minimax solution in this case.

(b) The random variable w has a binomial distribution such that

$$
\begin{aligned}
& P(w=w)=\binom{n}{w} \mu^{w}(1-\mu)^{n-w} ; \\
& w=0,1,2, \ldots n \\
& \text { let } Y=\frac{w}{n} .
\end{aligned}
$$

(i) Write down an expression for $\mathrm{p}(\mathrm{Y}=\mathrm{y})$ for $\mathrm{y}=0, \frac{1}{\mathrm{n}}, \frac{2}{\mathrm{n}}, \ldots 1$.
(ii) Express the distribution of Y as an 3 exponential family and identify the natural parameter and the dispersion parameter.
(iii) Derive an expression for the variance 3 function of Y.
(iv) For a set of n independent observations 3 of Y. Derive an expression of the scaled deviance.
11. (a) State the markov property and explain5briefly whether the following processes aremarkov
(i) $\quad \mathrm{AR}(\mathrm{y})$
(ii) ARMA (1, 1)
(b) Show that, given a random sample of size n from $\log \mathrm{N}\left(\mu, \sigma^{2}\right)$ distribution, if an uninformative prior is used for μ, then the posterior distribution for μ is of the form
$\mathrm{N}\left(\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \log x \mathrm{i}, \frac{\sigma^{2}}{\mathrm{n}}\right)$
(c) Let N be a random variable representing the number of claims arising from a portfolio of insurance policies. Let X_{i} denote the size of the $i^{\text {th }}$ claim and suppose that $X_{1}, X_{2}, \ldots \ldots$. are independent and identically distributed random variables, all having the same distribution as X. The claim sizes are independent of the number of claims.
Let $S=X_{1}+X_{2}+\ldots \ldots \ldots . X_{N}$ denote the total claim size. Show that :
$\mathrm{Ms}(\mathrm{t})=\mathrm{MN}(\log \mathrm{M} \times(\mathrm{t}))$
(d) Suppose that N has a type 2 Negative Binomial distribution with parameters $\mathrm{k}>0$ and $0<\mathrm{p}<1$. That is:

$$
\mathrm{P}(\mathrm{~N}=x)=\frac{\sqrt{\mathrm{k}+x}}{\sqrt{x+1} \sqrt{k}} \mathrm{P}^{\mathrm{k}} \rho^{x} ; x=0,1,2, \ldots .
$$

Suppose that x has an exponential distribution with mean $\frac{1}{\lambda}$. Derive an expression for $\mathrm{Ms}(\mathrm{t})$.
12. (a) (i) Show that the relationship between the mode and mean (i.e. which is bigger) for a weibull distribution is dependent on the value of just one of the parameter.
(ii) Show that the critical value of this 2 parameter is between 3 and 4 .
[You are given that $\sqrt{\frac{3}{4}}=0.893$ and $\sqrt{\frac{5}{4}}=0.906$.
(b) Explain why the following distribution can never belong to the exponential family.
(i) Continous uniform distribution in the interval $(0,2 \mu)$
(ii) Pareto with density function

$$
\frac{\alpha \lambda^{\alpha}}{(\lambda+x)^{\alpha+1}} ; x>0
$$

(iii) Negative Binomial Type 2 with probability density function

$$
\binom{\mathrm{k}+x-1}{x}(1-\mathrm{q})^{\mathrm{k}} \mathrm{q}^{x} ; x=0,1,2 \ldots
$$

$$
\mathrm{k} \neq 1
$$

(c) The length of time taken to deal with each of n reports are independent exponentially distributed random variables with mean $\frac{1}{\lambda}$ show that the gamma distribution is conjucate prior for this exponential distribution.
(d) The loss function under a decision problem is given by :

	H_{1}	H_{2}	H_{3}
D_{1}	23	34	16
D_{2}	30	19	18
D_{3}	23	27	20
D_{4}	32	19	19

(i) State which decision can be discounted immediately and why?
(ii) If H is distributed as
$\mathrm{P}\left(\mathrm{H}_{1}\right)=0.25$
$\mathrm{P}\left(\mathrm{H}_{2}\right)=0.15$
and $\mathrm{P}\left(\mathrm{H}_{3}\right)=0.60$
Determine the solution based on Bayes criterion to the problem.
13. The number X of claims on a given insurance policy over one year has probability distribution given by $\mathrm{p}(\mathrm{X}=x)=\theta^{x}(1-\theta) ; x=0,1,2, \ldots .$. where θ is an unknown parameter with $0<\theta, 1$.

Independent observations $x_{1}, x_{2}, \ldots \ldots x_{n}$ are available for the number of claims in the previous n year prior beliefs about θ are described by a distribution with density $f(\theta) \alpha \theta^{\alpha-1}(1-\theta)^{\alpha-1}$ for some constant $\alpha>0$.
(a) (i) Derive the maximum likelihood estimate $\hat{\boldsymbol{\theta}}$ of θ given the data $x_{1}, x_{2}, \ldots \ldots \ldots . x_{n}$.
(ii) Derive the posterior distribution of θ given $x_{1}, x_{2}, \ldots \ldots \ldots . . x_{n}$.
(iii) Derive the Bayesian estimate of θ under quadratic loss and show that it takes the form of a credibility estimate
$Z \hat{\theta}+(1-z) \mu$
where μ is a quantity you should specify from the prior distribution of θ.
(iv) Explain what happens to Z as the number of years of observed data increases.
(b) Determine the variance of the prior distribution of θ.
(c) Calculate the Bayesian estimate of θ under 4 quadratic loss if $\mathrm{n}=3 x_{1}=3, x_{2}=3$ and $x_{3}=5$ and
(i) $\alpha=5$
(ii) $\alpha=2$

Comment on your result in the light of (b) above.

