BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination
December, 2011

PHYSICS

PHE-16 : COMMUNICATION PHYSICS

Time : 2 hours
Maximum Marks : 50
Note : All questions are compulsory. Use of \log tables and nonprogrammable calculators is allowed. Symbols have their usual meanings.

1. Attempt any five parts:
$2 \times 5=10$
(a) What is minimum sampling frequency to sample a base band audio signal for communication ?
(b) Write the expression for the channel capacity C of a communication system.

If $\frac{S}{N}=15$ and $B=10,000$, calculate C.
(c) Calculate the quantization noise for a digital signal with step size 10 mV .
(d) What is the difference between a compiler and an interpreter in a computer ?
(e) Draw the time domain wave forms of AM wave for modulation index $M_{a}=0$ and >1.
(f) What are the two classes of computer network architecture?
(g) Draw the diagram of microwave Magic T.
(h) Draw the basic configuration of typical optical fibre communication.
2. Attempt any two parts:
(a) A transmission line of $Z_{0}=125 \Omega$ is
connected to a $\frac{\lambda}{4}$ section of transmission line
$\left(Z_{0}=250 \Omega\right)$ which is terminated in 500Ω load. Show that the transmission line is matched to $\frac{\lambda}{4}$ section.
(b) Draw sinusoidal, triangular, square wave, sawtooth and pulse wave form. Write one application of saw tooth wave.
(c) Define radiation pattern and gain of an 4+1 antenna. Write one example of an antenna.
3. Attempt any two parts :
(a) Derive mathematical expression of an A.M. wave and indicate the sideband components. Why is the S.S.B. transmission beneficial?
(b) Explain the sampling scheme used in time division multiplexing system for transmission of 6 channels.
(c) Explain the routing of call through strowger step by step switching system.
4. Attempt any two parts :
(a) For a parabolic dish antenna, show that the 5 -3 db beam width with $\mathrm{D}=6 \mathrm{~m}$ and $\lambda=3 \mathrm{~cm}$ is 0.35°.
(b) Obtain the expression for the dc component $3+2$ of the diode current in case of $p-n$ juction microwave detector. Determine its value if the diode is exposed to microwave signal of $V=1 \cos \omega t, I_{0}=10^{-6} \mathrm{~A}$ and $a=40$.
(c) Describe the structure and characteristics of 5 a graded index multimode fibre suitable for optical fibre communication.
5. Attempt any two parts:
(a) Describe the configuration required for 5 accessing Internet via ISP.
(b) What is an intranet network? Describe its $\mathbf{1 + 4}$ advantages and disadvantages.
(c) Compare the OSI and TCP/IP reference 5 models in computer networks.

विज्ञान स्नातक (बी.एस सी.)
 सत्रांत परीक्षा

दिसंबर, 2011
भौतिक विज्ञान
पी.एच.ई.-16 : संचार भौतिकी
समय : 2 घण्टे
अधिकतम अंक : 50
नोट : सभी प्रश्न अनिवार्य हैं। लॉग सारणी तथा अप्रोग्रामीय कैल्कुलेटर
का प्रयोग कर सकते हैं। प्रतीकों के अपने सामान्य अर्थ हैं।

1. कोई पाँच भागों के उत्तर लिखें।
(a) संचार हेतु श्रव्य बेस बैंड सिग्नल के प्रतिदर्श लेने के लिए प्रतिचयन आवृत्ति का न्यूनतम मान क्या होगा ?
(b) संचार प्रणाली की चैनेल क्षमता C का व्यंजक लिखें
$\frac{S}{N}=15$ तथा $B=10,000$ लेकर C का मान परिकलित
करें।
(c) 10 mV सोपान आयाम वाले अंकीय सिग्नल का प्रमात्रीकरण रव (noise) परिकलित कीजिए।
(d) कम्प्यूटर के संकलक और अनुदेशांतरक में अंतर बताएं।
(e) मॉडुलन सूचकांक $M_{a}=0$ और >1 के लिए $A M$ तरंगरूपों का चित्र खींचें।
(f) कम्प्यूटर नेटवर्क स्थापत्यकला के दो वर्ग कौन से हैं ?
(g) सूक्ष्मतरंग मैजिक T का आरेख खींचे।
(h) प्रतिरूपी प्रकाशिक तंतु तंत्र के आधारभूत संविन्यास का चित्र खींचें।
2. कोई दो भाग हल करें :
(a) $Z_{0}=125 \Omega$ की अभिलक्षजीक प्रतिबाधा वाली संचरण

लाईन को $Z_{0}=250 \Omega$ वाली संचरण लाइन के $\frac{\lambda}{4}$
लम्बाई के खंड से जोड़ा गया है। इस खंड का अंत 500Ω के लोड से किया है। सिद्ध करें कि संचरण लाइन $\frac{\lambda}{4}$ खंड से सुमेलित होगी।
(b) साइन तरंग, त्रिभुजाकार तरंग, वर्ग तरंग, आरादंती तथा $\mathbf{4 + 1}$ स्पंद तरंगरूपों के चित्र खींचें। आरादंती तरंग का एक अनुप्रयोग लिखें।
(c) एक ऐन्टेना के विकिरण प्रतिरूप तथा ऐन्टेना लब्धि की $\mathbf{4 + 1}$ परिभाषा लिखें ऐन्टेना का कोई एक उदाहरण लिखें।
3. कोई दो भाग हल करें ।
(a) A.M. तरंग के लिए गणितीय व्यंजक व्युत्पन्न करें और $\mathbf{4 + 1}$ इसमें पार्श्व बैंड अवयव दिखाएं। एकल पार्श्व बैंड (S.S.B.) प्रेषण लाभकारक क्यों होता है ?
(b) 6 चैनेल प्रेषण के लिए काल विभाजन बहुसंकेतन तंत्र में प्रयुक्त प्रतिचयन विधि समझाएं।
(c) स्ट्रॉजर (चरणशः) एक्सचेंज में काल अनुमार्गण समझाएं। 5
4. कोई दो भाग हल करें ।
(a) सिद्ध करें कि 6 m व्यास (D) की परवलयिक परावर्तक

ऐन्टेना के लिए $\lambda=3 \mathrm{~cm}$ पर -3 db किरण पुंज चौड़ाई का मान 0.35° है।
(b) $p-n$ संधि सूक्ष्मतरंग संसूचक में डायोड धारा के dc $3+2$

घटक का व्यंजक व्युत्पत्र करें। इस संसूचक पर $V=1 \cos \omega t, I_{0}=10^{-6} \mathrm{~A}$ और $a=40$ का सूक्ष्मतरंग आपतित होनेपर डायोड धारा के dc घटक का मान परिकलित करें।
(c) प्रकाशिय संचार में प्रयुक्त क्रमिक अपवर्तनांक बहु5 विधा प्रकाशिक तंतु की संरचना तथा अभिलक्षणिक समझाएं।
5. कोई दो भाग हल करें ।
(a) ISP के द्वारा इंटरनेट अभिगम प्राप्त करने के लिए आवश्यक 5 संविन्यास की व्याख्या करें।
(b) इंट्रानेट नेटवर्क क्या होता है? इस के लाभ और कमियां $\mathbf{1 + 4}$ बताएं।
(c) कम्प्यूटर नेटवर्क में OSI और TCP/IP संदर्भ मॉडल 5 की तुलना करें।

