BACHELOR'S DEGREE PROGRAMME

Term-End Examination
December, 2011

MATHEMATICS

MTE-9 : REAL ANALYSIS

Time : 2 hours
Maximum Marks : 50
Note: Attempt five questions in all. Question No. 1 is compulsory. Do any four questions out of the Questions No. 2 to 7.

1. Are the following statements True or False? Give $\mathbf{1 0}$ reasons for your answers.
(a) The function $f(x)=x^{2}+|x|$ is differentiable at $x=-1$.
(b) Every sub sequence of the sequence $\left(\frac{1}{\mathrm{n}^{2}}\right)$ is convergent.
(c) Every infinite set is an open set
(d) On the curve $y=x^{2}+x+1$, the chord joining the points whose abscissae are $x=2$, $x=4$ is parallel to the tangent to the curve at the point whose abscissa is $x=3$.
(e) A necessary condition for the function f to be integrable is that it is continuous.
2. (a) Prove that every strictly increasing onto function is invertible.
(b) Show that the sequence $\left(\frac{a_{n}}{n}\right)$ is convergent 3 where $\left(a_{n}\right)$ is a bounded sequence.
(c) Prove that the sequence $\left(f_{n}(x)\right)$ where

5
$f_{\mathrm{n}}(x)=\frac{\mathrm{n} x}{1+n^{2} x^{2}}$ is not uniformly convergent in $[-1,1]$
3. (a) Show that the set $Z=\{x: x$ is an integer $\}$ is a closed set.
(b) Check whether the function $f(x)=\sin x+\cos$ x has an extreme value in the interval $[\pi, 2 \pi]$.
(c) Evaluate $\lim _{x \rightarrow \infty}\left(\frac{x-2}{x+3}\right)^{x}$
4. (a) Obtain the value of x for which the series

$$
\sum \frac{1.3 .5 \cdot}{2.4 .6 \cdot(4 n-3)} \cdot \frac{x^{2 n}}{4 n}(x>0)
$$

is convergent.
(b) Use the principle of mathematical induction 4 to show that $1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}$ $=\frac{n(n+1)(2 n+1)}{6}, n$ being natural number.
5. (a) Prove that the function f defined by
$f(x)=\left\{\begin{aligned} 4, \text { when } x & \text { is rational } \\ -1, \text { when } x & \text { is irrational }\end{aligned}\right.$
is discontinuous at every point in \mathbf{R}.
(b) Prove that

$$
\frac{x^{2}}{2(1+x)}<x-\log (1+x)<\frac{x^{2}}{2}(x<0)
$$

(c) Prove that the function f defined on $[0,1]$ by 2
$f(x)= \begin{cases}2 \mathrm{n} x & \text { when } \frac{1}{\mathrm{n}+1}<x \leq \frac{1}{\mathrm{n}}, \mathrm{n}=1,2,3 \ldots \\ 0 & \text { when } x=0\end{cases}$
is integrable on $[0,1]$
6. (a) Let f and F be two real - valued functions defined on closed interval $[a, b]$ such that f is Riemann integrable, F is differentiable and $\mathrm{F}^{\prime}(x)=f(x) \forall x \in[\mathrm{a}, \mathrm{b}]$. Show that

$$
\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

(b) Prove that between any two real roots of 3 $\sin x=\mathrm{e}^{-2 x}$, there is at least one root of $\cos x+2 \mathrm{e}^{-2 x}=0$.
(c) Show that the function $f(x)=|\sin x|$ is a 2 periodic function with period π.
7. (a) Test the conditional convergence of the
series $1-\frac{1}{2^{2 / 3}}+\frac{1}{3^{2 / 3}}-\frac{1}{4^{2 / 3}}+\ldots \ldots \ldots \ldots$.
(b) Use integral test, to test the convergence of 3 the series

$$
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}
$$

(c) State Bolzano-Weierstrass Theorem for sets. 3 Apply this theorem to find out whether the set $\left\{\frac{1}{n}: n\right.$ is a natural number $\}$ has a limit point.

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा

दिसम्बर, 2011

गणित

एम.टी.ई.-9 : वास्तविक विश्लेषण

समय : 2 घण्टे
अधिकतम अंक : 50
नोट : कुल पाँच प्रश्न कीजिए। प्रश्न सं. 1 अनिवार्य हैं। प्रश्न सं 2 से 7 में से किन्हीं चार प्रश्नों के उत्तर दीजिए।

1. बताइए निम्नल्लिखित कथन सत्य हैं या असत्य ? अपने उत्तरों के कारण बताइए।
(a) फलन $f(x)=x^{2}+|x| \quad x=-1$ पर अवकलनीय है।
(b) अनुक्रम $\left(\frac{1}{\mathrm{n}^{2}}\right)$ का प्रत्येक उप-अनुक्रम अभिसारी है।
(c) प्रत्येक अपरिमित समुच्चय एक विवृत समुच्चय है।
(d) वक्र $y=x^{2}+x+1$ पर बिन्दुओं को जिनके भुज $x=2, x=4$ हैं, मिलाने वाली जीवा उस बिंदु पर खींची गई स्पर्श रेखा के समानांतर होती है जिसका भुज $x=3$ होता है।
(e) फलन f के समाकलनीय होने के लिए अनिवार्य प्रतिबंध है कि वह संतत हो।
2. (a) सिद्ध कीजिए कि प्रत्येक निरंतर वर्धमान आच्छादी फलन 2 व्युत्कमणीय होता है।
(b) दिखाइए कि अनुक्रम $\left(\frac{a_{n}}{n}\right)$ अभिसारी है, जहाँ $\left(a_{n}\right)$ एक परिबद्ध अनुक्रम है।
(c) सिद्ध कीजिए कि अनुकम $\left(f_{\mathrm{n}}(x)\right)$ जहाँ 5 $f_{\mathrm{n}}(x)=\frac{\mathrm{n} x}{1+n^{2} x^{2}}$
[$-1,1$] में एकसमानतः अभिसारी नहीं है।
3. (a) दिखाइए कि समुच्चय $Z=\{x: x$ एक पूर्णांक है $\}$ एक 3 संवृत्त समुच्चय है।
(b) जाँच कीजिए कि फलन $f(x)=\sin x+\cos x$ का अन्तराल $[\pi, 2 \pi]$ में चरम मान होता है या नहीं।
(c) $\lim _{x \rightarrow \infty}\left(\frac{x-2}{x+3}\right)^{x}$ ज्ञात कीजिए।
4. (a) x का वह मान प्राप्त कीजिए जिसके लिए श्रेणी

$$
\sum \frac{1.3 .5 .}{2.4 .6 . \quad(4 \mathrm{n}-3)} \cdot \frac{x^{2 \mathrm{n}}}{(4 \mathrm{n}-2)}(x>0)
$$

अभिसारी है।
(b) गणितीय आगमन नियम द्वारा दिखाइए कि

$$
\begin{aligned}
& 1^{2}+2^{2}+3^{2}+\ldots+n=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6} . \\
& \text { जहाँ } \mathrm{n} \text { प्राकृतिक संख्या है। }
\end{aligned}
$$

5. (a) सिद्ध कीजिए कि
$f(x)=\left\{\begin{array}{r}4, \text { जहाँ } x \text { परिमेय है } \\ -1, \text { जहाँ } x \text { परिमेय है }\end{array}\right.$
द्वारा परिभाषित, $f \mathbf{R}$ में प्रत्येक बिंदू पर असंतत है .
(b) सिद्ध कीजिए कि

$$
\frac{x^{2}}{2(1+x)}<x-\log (1+x)<\frac{x^{2}}{2}(x<0)
$$

(c) सिद्ध कीजिए कि $[0,1]$ पर

$$
f(x)=\left\{\begin{array}{c}
2 \mathrm{n} x \text { जब } \frac{1}{\mathrm{n}+1}<x \leq \frac{1}{\mathrm{n}}, \mathrm{n}=1,2,3 \ldots . \\
0 \quad \text { जब } \quad x=0
\end{array}\right.
$$

द्वारा परिभाषित फलन $f[0,1]$ पर समाकलनीय है।
6. (a) मान लीजिए f and F संवृत्त अन्तराल $[a, b]$ पर परिभाषित

दो एसे वास्तविक-मान फलन है जिससे कि f रीमान समकलनीय है, F अवकलनीय है और
$\mathrm{F}^{\prime}(x)=f(x) \forall x \in[\mathrm{a}, \mathrm{b}]$.
दिखाइए कि $\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x=\mathrm{F}(\mathrm{b})-\mathrm{F}(\mathrm{a})$.
(b) सिद्ध कीजिए कि $\sin x=\mathrm{e}^{-2 x}$, के किन्हीं दो वास्तविक

मूलों के बीच, $\cos x+2 \mathrm{e}^{-2 x}=0$ का कम से कम एक मूल होता है।
(c) दिखाइए कि फलन $f(x)=|\sin x|$ आवर्तनांक π वाला 2 आवर्ती फलन है।
7.
(a) श्रेणी $1-\frac{1}{2^{2 / 3}}+\frac{1}{3^{2 / 3}}-\frac{1}{4^{2 / 3}}+$

प्रतिबंध अभिसरण की जाँच कीजिए।
(b) समाकल परीक्षण द्वारा श्रेणी $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}$ के

अभिसरण की जाँच कीजिए।
(c) समुच्चों के लिए बुलजानों- वाइएर्स्ट्रम प्रमेय का कथन 3 दीजिए । इस प्रमेय का प्रयोग करके पता लगाइए कि set $\left\{\frac{1}{\mathrm{n}}: \mathrm{n}\right.$ is a natural number $\}$ का सिमा बिन्दु है या नहीं।

