BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination

December, 2011

MATHEMATICS

MTE-3 : MATHEMATICAL METHODS

Time : 2 hours

Maximum Marks : 50
Note: Question no. 7 is compulsory. Do any four questions from question no. 1 to 6 . Use of calculator is not allowed.

1. (a) Show that the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with position
vectors $(2 i-j+k),(i-3 j-5 k)$ and ($3 i-4 j-4 k$) respectively, are the vertices of a right angled triangle.
(b) If $x^{y}=\mathrm{e}^{x-y}$, prove that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{l_{\mathrm{n}} x}{\left(1+l_{\mathrm{n}} x\right)^{2}}$.
(c) For a binomial variate x, if $n=6$ and $9 p(x=4)=p(x=2)$ then find the probability of success p .
2. (a) Trace the curve $x y^{2}=4 \mathrm{a}^{2}(2 \mathrm{a}-x)$.
(b) Two researchers adopted different sampling techniques while investigating the same group of students to find the number of students of different intelligence levels. The results are as follows:

Researcher	No. of students in each level		
	Below Average	vera	Abo Aver
X	86	60	54
Y	40	33	27

Would you say that the sampling techniques adopted by the two researchers are significantly different at 5% level of significance?
(You may use the following values.

$$
\begin{aligned}
& x_{2,0.05}^{2}=5.99 \\
& x_{5,0.05}^{2}=11.07 \\
& \left.x_{3,0.05}^{2}=7.82\right)
\end{aligned}
$$

3. (a) The sum of first three terms of a G.P. is 14 and their product is 64 . Find the first term and the common ratio of the G.P.
(b) Evaluate the following integral.

$$
\int_{0}^{\frac{1}{\sqrt{2}}} \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

(c) Suppose 5 students are enrolled in a course. 4 The amount of time (in hours) each student spends per week is $6,9,11,8,16$.
(i) Compute the population mean
(ii) Calculate the sample means by selecting samples of three individuals.
(iii) Find the mean of the sample means obtained in (ii) above.
4. (a) Solve the differential equation

$$
(4 x-y+5) \mathrm{d} x+(2 y-x+3) \mathrm{d} y=0
$$

(b) The product of two positive real numbers is 3 25. Find the minimum value of their sum.
(c) Calculate the coefficient of correlation 4 between x and y from the following data :

$x:$	1	3	4	5	7
$y:$	3	7	9	11	15

Also find the line of regression of y on x.
5. (a) Let the function $f: R \rightarrow R$ be defined as $f(x)=4 x+1$. Is f one-one ? Is f onto ? Find f^{-1}, if it exists.
(b) Evaluate

$$
\lim _{x \rightarrow 1} \frac{x^{3}-4 x^{2}+3}{2 x^{2}-3 x+1}
$$

(c) The p.d.f. of a random variable X is :

$$
f(x)=y_{0} \mathrm{e}^{-\mathrm{b}(x-\mathrm{a})}, \mathrm{a} \leq x<\infty
$$

where a, b and y_{0} are constants. Show that $y_{0}=\mathrm{b}=\frac{1}{\sigma}, \mathrm{a}=\mathrm{m}-\sigma$ and C.D.F of X is $1-\mathrm{e}^{-\frac{\mathrm{x}}{\sigma}+\frac{\mathrm{m}}{\sigma}-1}$ where m and σ are resectively the mean and standard deviation of the variable X .
6. (a) From 3 capitals, 5 consonants and 4 vowels, 4 how many words can be formed, each containing 3 consonants and 2 vowels and begining with a capital ?
(b) Calculate the mean, median and mode for the following frequency distribution:

Class-interval	Frequency
$0-8$	8
$8-16$	7
$16-24$	16
$24-32$	24
$32-40$	15
$40-48$	7

7. State whether the following statements are true or false. Give reasons for your answers.
$2 \times 5=10$
(a) A number is chosen at random among the first 120 natural numbers. The probability of the number chosen being a multiple of 5 or 15 is $\frac{1}{5}$.
(b) If x is a Poisson variate such that $\mathrm{p}(x=3)=\frac{2}{3} \mathrm{p}(x=4)$ then mean of x is 6.
(c) The equation of the circle which passes through the point $(1,2)$ and whose centre is $(-3,2)$ is $x^{2}+y^{2}+4 x-6 y-3=0$.
(d) The function $f(x)=|x|$ has differential coefficient at $x=0$.
(e) If A and B are independent events then $P(A \cap B)=0$.

विज्ञान स्नातक (बी.एस सी.)

सत्रांत परीक्षा
दिसम्बर, 2011

गणित
एम.टी.ई.-3 : गणितीय विधियाँ

समय : 2 घण्टे
अधिकतम अंक : 50

नोट : प्रश्न सं. 7 अनिवार्य है। प्रश्न सं. 1 से 6 में से कोई चार प्रश्न कीजिए। कैलकुलेटरों का प्रयोग करने की अनुमति नहीं है।

1. (a) दिखाइए कि स्थिति सदिश क्रमश:
$(2 i-j+k)(i-3 j-5 k)$ और $(3 i-4 j-4 k)$ वाले
बिंदु A, B, C, समकोण त्रिभुज के शीर्ष हैं।
(b) यदि $x^{y}=\mathrm{e}^{x-y}$, तब सिद्ध कीजिए कि 3

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{l_{\mathrm{n}} x}{\left(1+l_{\mathrm{n}} x\right)^{2}}
$$

(c) द्विपद विचर x के लिए यदि $n=6$ और 4 $9 \mathrm{p}(x=4)=\mathrm{p}(x=2)$ हो, तब सफलता p की प्रायिकता ज्ञात कीजिए।
2. (a) वक्र $x y^{2}=4 \mathrm{a}^{2}(2 \mathrm{a}-x)$ का अनुरेखण कीजिए।
(b) दो शोधकर्ताओं ने विभिन्न बुद्धिमत्ता स्तरों के विद्यार्थियों की संख्या ज्ञात करने के लिए विद्यार्थियों के एक समूह का निरीक्षण करने हेतु अलग-अलग प्रतिचयन तकनीकें अपनाईं। उनके द्वारा प्राप्त परिणाम इस प्रकार हैं।

	प्रत्येक स्तर के विद्यार्थियों की संख्या		
शोधकर्त्ता	औसत से कम	औसत	औसत से ज्यादा
X	86	60	54
Y	40	33	27

क्या आप कहेंगे कि दोनों शोधकर्ताओं द्वारा अपनाई गई प्रतिचयन तकनीकें 5% सार्थकता स्तर पर सार्थक रूप से अलग हैं। (आप निम्नलिखित मानों का प्रयोग कर सकते हैं

$$
\begin{aligned}
& \chi_{2,0.05}^{2}=5.99 \\
& \chi_{5,0.05}^{2}=11.07 \\
& \left.\chi_{3,0.05}^{2}=7.82\right)
\end{aligned}
$$

3. (a) गुणोत्तर श्रेणी के प्रथम तीन पदों का योग 14 है और उनका गुणनफल 64 है। गुणोत्तर श्रेणी का प्रथम पद और सार्व अनुपात ज्ञात कीजिए।
(b) निम्नलिखित समाकल का मूल्यांकन कीजिए :

$$
\int_{0}^{\frac{1}{\sqrt{2}}} \frac{\sin ^{-1} x}{\left(1-x^{2}\right)^{3 / 2}} \mathrm{~d} x
$$

(c) मान लीजिए एक पाठ्यक्रम में 5 विद्यार्थी नामांकित हैं। प्रत्येक विद्यार्थी द्वारा प्रति सताह व्यतीत किया गया समय (घंटों में) $6,9,11,8,16$ है।
(i) समष्टि माध्य ज्ञात कीजिए।
(ii) तीन व्यष्टियों के प्रतिदर्श चुनकर प्रतिदर्श माध्य परिकलित कीजिए।
(iii) ऊपर (ii) में प्राप्त प्रतिदर्श माध्यों का माध्य ज्ञात कीजिए।
4. (a) अवकल समीकरण $(4 x-y+5) \mathrm{d} x+(2 y-x+3) \mathrm{d} y=0$ को हल
कीजिए।
(b) दो धनात्मक वास्तविक संख्याओं का गुणनफल 25 है।

उनके योग का न्यूनतम मान ज्ञात कीजिए।
(c) निम्नलिखित आंकड़ों से x और y के बीच सहसंबंध 4 गुणांक परिकलित कीजिए :

$\mathrm{x}:$	1	3	4	5	7
$\mathrm{y}:$	3	7	9	11	15

x पर y की समाश्रयण रेखा ज्ञात कीजिए।
5. (a) मान लीजिए फलन $f: R \rightarrow R, f(x)=4 x+1$ के रूप में परिभाषित है। क्या f एकैकी है ? क्या f आच्छादी है ? यदि f^{-1} का अस्तित्व है तो इसे ज्ञात कीजिए।
(b) $\lim _{x \rightarrow 1} \frac{x^{3}-4 x^{2}+3}{2 x^{2}-3 x+1}$ का मूल्यांकन कीजिए।
(c) यादृच्छिक चर X का p.d.f.
$f(x)=y_{0} \mathrm{e}^{-\mathrm{b}(x-\mathrm{a})}, \mathrm{a} \leq x<\infty$ है, जहाँ a, b और
y_{0} अचर हैं। दिखाइए कि $y_{0}=\mathrm{b}=\frac{1}{\sigma}, \mathrm{a}=\mathrm{m}-\sigma$

और X का C.D.F, $1-\mathrm{e}^{-\frac{x}{\sigma}}+\frac{\mathrm{m}}{\sigma}-1$ है जहाँ m और σ
क्रमशःचर X के माध्य और मानक विचलन हैं।
6. (a) 3 बड़े अक्षरों, 5 व्यंजनों और 4 स्वरों से ऐसे कितने शब्द

बनाए जा सकते हैं जिनमें प्रत्येक शब्द में 3 व्यंजन, 2 स्वर हों और वह बड़े अक्षर से शुरू होता है ?
(b) निम्नलिखित बारंबारता बंटन का माध्य, माध्यिका और बहुलक ज्ञात कीजिए :

वर्ग-अन्तराल	बारंबारता
$0-8$	8
$8-16$	7
$16-24$	16
$24-32$	24
$32-40$	15
$40-48$	7

7. बताइए निम्नलिखित कथन सत्य हैं या असत्य। उत्तर के पक्ष में कारण दीजिए।

$$
2 \times 5=10
$$

(a) प्रथम 120 प्राकृतिक संख्याओं में से यादृच्छया एक संख्या चुनी जाती है। चुनी गई संख्या के 5 या 15 के गुणांक होने की प्रायिकता $\frac{1}{5}$ है।
(b) यदि x एक ऐसा प्वांसा विचर है जिसके लिए

$$
\mathrm{p}(x=3)=\frac{2}{3} \mathrm{p}(x=4) \text {, तब } x \text { का माध्य } 6 \text { है। }
$$

(c) बिन्दु $(1,2)$ से गुजरने वाले और केन्द्र $(-3,2)$ वाले वृत का समीकरण $x^{2}+y^{2}+4 x-6 y-3=0$ है।
(d) फलन $f(x)=|x|$ का $x=0$ पर अवकल गुणांक होता है।
(e) यदि A और B स्वतंत्र घटनाएँ हैं तब $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$.

