BACHELOR'S DEGREE PROGRAMME
 Term-End Examination
 December, 2011
 ELECTIVE COURSE : MATHEMATICS MTE-13 : DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
Note: Question 1 is compulsory. Do any four questions from question number 2 to 7 . Calculators are not allowed.

1. Which of the following statements are true and $\mathbf{1 0}$ which are false? Justify your answer.
(a) 'Close the door' is a statement.
(b) Sn , the number of subsets of a set of n elements, satisfies a recurrence of order 2 .
(c) If $n \geqslant 2, S \subseteq\{1,2, \ldots, n\},|S|=n+1$, then S contains at least one pair of coprime integers.
(d) Every bipartite graph is a tree.
(e) The generating function for the sequence
$(-1)^{\mathrm{n}}$ is $\frac{1}{1-\mathrm{z}}$.
2. (a) Define the hypercube graph Qn. How 4 many vertices and edges does it have? Explain your answer.
(b) Solve the recurrence relation $a_{n+1}-a_{n}=5^{n}$, $n \geqslant 0, a_{0}=1$ using generating function.
3. (a) Let a_{n} be the number of n digit odd numbers.

Formulate a recurrence for a_{n} stating the initial conditions.
(b) Use Mathematical Induction to prove that 4 $1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)$ for $n \geqslant 1$.
(c) Find the number of 5 lettered words over 3 the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ in which second letter is b and fourth letter is a ?
4. (a) Show that 3

$$
(p \rightarrow \sim q) \wedge(p \rightarrow \sim r) \equiv \sim(p \wedge(q \vee r))
$$

(b) How many numbers from 0 to 999 are not 3 divisible by either 5 or 7 ?
(c) Solve the recurrence given by $x_{\mathrm{n}}=\frac{x_{n-1}^{5}}{x_{\mathrm{n}-2}^{6}}$,
together with the initial conditions $x_{0}=1$, $x_{1}=3$
5. (a) Find coefficient of $a^{6} b^{3} c^{3}$ in expansion of 3 $(a+b+2 c)^{12}$.
(b) Determine the validity of the following argument :

If my plumbing plans do not meet the construction code, then I cannot build my house.

If I hired a licensed contractor, then my plumbing plans will meet the construction code.

I hired a licensed contractor.
\therefore I can build my house.
(c) Let G be a (p, q) graph all of whose vertices have degree 1 or 2 . Find the number of vertices of degree 1 in terms of p and q.
6. (a) Show that any tree with exactly two vertices 3 of degree 1 is a path.
(b) How many distinct solutions are there of the equation $x+y+z+w=15$ in non negative integers and how many solutions are there in positive integers ?
(c) Show that the Peterson graph is not 3 3-critical.
7. (a) State Dirac's theorem. Construct a 3 connected non-Hamiltonian graph on 5 vertices in which each vertex has degree 2 or more.
(b) Draw the logic circuit for the expression $\left(x_{1}{ }^{\prime} \vee\left(x_{2} \wedge x_{3}{ }^{\prime}\right)\right) \wedge\left(x_{2} \vee x_{4}{ }^{\prime}\right)$.
(c) A box contain two white socks and two blue 3 socks. Two socks are drawn at random. Find the probability that they are of same colour.

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा

दिसंबर, 2011

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-13 : विविक्त गणित

समय : 2 घण्टे
अधिकतम अंक : 50
नोट: प्रश्न संख्या 1 अनिवार्य है। प्रश्न संख्या 2 से 7 में से कोई चार प्रश्नों के उत्तर दीजिए। कैलकुलेटरों के प्रयोग करने की अनुमति नहीं हैं।

1. निम्नलिखित में से कौन से कथन सत्य हैं और कौन से कथन असत्य हैं ? अपने उत्तर की पुष्टि कीजिए।
(a) 'दरवाजा बंद करो' एक कथन है।
(b) Sn जो n अवयवों के समुच्चय के उपसमुच्चयों की संख्या है, कोटि 2 की पुनरावृत्ति को संतुष्ट करती है।
(c) यदि $\mathrm{n} \geqslant 2, \mathrm{~S} \subseteq\{1,2, \ldots, \mathrm{n}\},|\mathrm{S}|=\mathrm{n}+1$, तब S में असहभाज्य (coprime) पूर्णांकों का कम से कम एक युग्म होता है।
(d) प्रत्येक द्विभाजित ग्राफ वृक्ष होता है।
(e) अनुक्रम $(-1)^{\mathrm{n}}$ का जनक फलन $\frac{1}{1-\mathrm{z}}$ है।
2. (a) अतिघन ग्राफ Qn को परिभाषित कीजिए। इसमें कितने शीर्ष और कोर होते हैं ? अपने उत्तर को स्पष्ट कीजिए।
(b) जनक फलन का प्रयोग करते हुए पुनरावृत्ति संबंध 6 $a_{n+1}-a_{n}=5^{n}, n \geqslant 0, a_{0}=1$ को हल कीजिए।
3. (a) मान लीजिए a_{n}, n अंक वाली विषम संख्याओं की 3 संख्या है। प्रारंभिक प्रतिबंधों को बताते हुए a_{n} के लिए एक पुनरावृत्ति सूत्रित कीजिए।
(b) गणितीय आगमन द्वारा सिद्ध कीजिए कि $n \geqslant 1$ के लिए 4 $1^{3}+3^{3}+5^{3}+\ldots+(2 n-1)^{3}=n^{2}\left(2 n^{2}-1\right)$.
(c) वर्णमाला $\{a, b, c\}$ से बनाए गए पाँच-अक्षरों वाले शब्दों 3 की संख्या ज्ञात कीजिए जिसमें दूसरा अक्षर b और चौथा अक्षर a हो।
4. (a) दिखाइए कि 3

$$
(p \rightarrow \sim q) \wedge(p \rightarrow \sim r) \equiv \sim(p \wedge(q \vee r)
$$

(b) 0 से 999 तक कितनी संख्याएँ हैं जो पाँच से या सात से भाज्य नहीं होती ?
(c) $x_{\mathrm{n}}=\frac{x_{n-1}^{5}}{x_{n-2}^{6}}$ द्वारा दी गई पुनरावृत्ति को हल कीजिए 4 जहाँ प्रारंभिक प्रतिबंध $x_{0}=1$ और $x_{1}=3$ है।
5. (a) $(a+b+2 c)^{12}$ के प्रसार में $a^{6} b^{3} c^{3}$ का गुणांक ज्ञात कीजिए।
(b) निम्नलिखित तर्क की वैधता निर्धारित कीजिए : 5

यदि मेरी नल आदि संबंधी योजनाएँ निर्माण कोड के अनुसार नहीं हैं, तब मैं अपना घर नहीं बना सकता।

यदि मैं लाइसेंस - प्राप्त ठेकेदार से काम कराता हूँ, तो मेरी नल आदि संबंधी योजनाएँ निर्माण कोण के अनुसार होंगी।

मैंने लाइसेंस - प्राप्त ठेकेदार से काम कराया।
\therefore मैं अपना घर बना सकता हूँ।
(c) मान लीजिए G एक ऐसा (p, q) ग्राफ है जिसके सभी 2 शीर्षों की घात 1 या 2 है। p और q के पदों में घात 1 वाले शीर्षों की संख्या ज्ञात कीजिए।
6. (a) दिखाइए कि घात 1 के ठीक दो शीर्षों वाला कोई भी वृक्ष 3 पथ है।
(b) $x+y+z+w=15$ के ऋणेतर पूर्णांकों में और धन 4 पूर्णांकों में कितने अलग-अलग हल हैं ?
(c) दिखाइए कि पेटर्सन-ग़ाफ 3 -क्रांतिक नहीं है।
7. (a) डिराक-प्रमेय का कथन दीजिए। 5 शीर्षों पर एक संबद्ध 3 अ-हैमिल्टोनीय ग्राफ बनाइए जिसमें प्रत्येक शीर्ष की दो या अधिक घात हों।
(b) व्यंजक
$\left(x_{1}{ }^{\prime} \vee\left(x_{2} \wedge x_{3}{ }^{\prime}\right) \wedge\left(x_{2} \vee x_{4}{ }^{\prime}\right)\right.$ के लिए तर्क पथ $\mathbf{4}$ बनाइए।
(c) एक बक्से में दो सफेद ज़ुराबें और दो नीली ज़ुराबें हैं। दो 3 जुराबे यादृच्छया उठायी जाती हैं। दोनों ज़ुराबें एक ही रंग की होंगी, इसकी प्रायिकता ज्ञात कीजिए।

