BACHELOR'S DEGREE PROGRAMME

Term-End Examination
 December, 2011
 ELECTIVE COURSE : MATHEMATICS MTE-11 : PROBABILITY AND STATISTICS

Time : 2 hours
Maximum Marks : 50
Note: Question No. 7 is Compulsory. Answer any four questions from questions No. 1 to 6. Calculators are not allowed.

1. (a) A, B and C are three events. Express the 3 following events in set notation.
(i) Simultaneous occurence of A, B and C.
(ii) Occurrence of at least one of them.

0
0
N
N
(iii) Both A and B occur and C does not occur.
(iv) The event B but not A occurs.
(v) Not more than one of A, B and C occur.
(b) If the moment generating function (m.g.f.) of a random variable X is
$M_{X}(t)=\exp \left(3 t+32 t^{2}\right)$. Find mean standard deviation of X and also compute $\mathrm{P}(x<3)$.
(c) The probability density function of a random variable X is $\mathrm{f}(x)=\mathrm{C}|x|$; Find C , and the valve of x_{o} such that $\mathrm{F}_{\mathrm{X}}\left(x_{\mathrm{o}}\right)=\frac{3}{4}$.
2. (a) Five unbiased dice were thrown 96 times 5 and the number of times 4,5 or 6 was obtained is given in the following table :

No. of dice showing 4,5 or 6	0	1	2	3	4	5
Frequency	1	10	24	35	18	8

At 5\% level of significance test whether this data comes from a binomial distribution. You may like to use the following values.

$$
\begin{aligned}
& \left(x_{5}^{2} 10.05\right)=11.07, \quad x_{6}^{2}(0.05)=12.59 \\
& \left.x_{7}^{2}(0.05)=14.07\right)
\end{aligned}
$$

(b) The yield (in kg) of 100 plots in the form of grouped frequency distribution is given below:

Yield (kg)	Frequency
$0-20$	6
$20-40$	21
$40-60$	35
$60-80$	30
$80-100$	8

(i) Estimate the no. of plots with an yield of
(A) 40 to 80 kg
(B) 10 to 70 kg
(ii) . Find the mean and standard deviation of yield.
3. (a) Suppose X is a gamma variate with $E(x)=3$ and $\operatorname{var}(X)=7$. Find the parameters α and λ of the gamma distribution.
(b) For the given bivariate probability 4 distribution of X and Y :

$$
\begin{gathered}
P(\mathrm{X}=x, \mathrm{Y}=y)=\frac{x^{2}+y}{32} \text { for } x=0,1,2,3 \\
\text { and } y=0,1 .
\end{gathered}
$$

Find:
(i) $\quad \mathrm{P}(\mathrm{X} \leq 1, \quad \mathrm{Y}=1)$ (ii) $\quad \mathrm{P}(\mathrm{X} \leq 1)$
(iii) $P(Y>0)$ and (iv) $P(Y=1 \mid X=3)$
(c) For normal distribution with mean zero and 3 variance σ^{2} show that :

$$
E(1 \times 1)=\sqrt{\frac{2}{\pi}} \sigma .
$$

4. (a) A factory produces steel pipes in three plants with daily production volumes of 500,1000 and 2000 units. From the past experience it is known that the fraction of defective outputs produced by three plants are respectively $0.005,0.008$ and 0.010 . If a pipe is selected at random from a day's total production and found to be defective, from which plant is that likely to have came ?
(b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be random sample of size n from a distribution with probability density function $f(X ; \theta)=\theta X^{\theta-1}, 0<X<1, \theta>0$ $=0$, else where
obtain a maximum likelyhood estimator of θ.
5. (a) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independently and identically distributed $b(1, p)$ random variables. Obtain a confidence internal for p using Chebychev's inequality.
(b) For 25 army personnels, line of regression of weight of kidneys (Y) on weight of heart (X) is $Y=0.399 \mathrm{X}+6.934$ and the line of regression of weight of heart on weight of kidney is $X-1.212 Y+2.461=0$. Find the correlation coefficient between X and Y and their mean values.
(c) If a random variable u has t - distribution with n degrees of freedom, find the distribution of u^{2}.
6. (a) Let X be a binomial variate with $n=100$,
$p=0.1$. Find the approximate value of $P(10 \leq X \leq 12)$ using :
(i) normal distribution
(ii) poisson distribution

You may like to use the following values.
$\mathrm{P}(\mathrm{Z} \leq 0.67)=0.7486$
$P(Z \leq 0.33)=0.6293$
$P(Z \leq 0)=0.5$
(b) For the given distribution :

3
$\mathrm{P}(\mathrm{X}=x)=\frac{2}{3}\left(\frac{1}{3}\right)^{x} x=0,1,2, \ldots \ldots$, find
moment generating function, mean and variance of X.
(c) For a distribution, the mean is 10 , variance is 16 , the skewness sk_{4} is +1 and kurtosis b_{2} is 4 . Obtain the first four moments about the origin i.e. zero. Comment upon the nature of the distribution.
7. State whether the following statements are true or false. Give reasons for your answers : $\quad \mathbf{5 \times 2}=\mathbf{1 0}$
(a) Poisson distribution is a limiting case of binomial distribution for $n \rightarrow \infty, p \rightarrow 1$ and $n p \rightarrow \infty$.
(b) For two independent events A and B, if $P(A)=0.2$ and $P(B)=0.4$, then $(A \cap B)=0.6$.
(c) If $\mathrm{H}_{0}: \mathrm{P} \leq 0.6$ and $\mathrm{X} \sim \mathrm{B}(\mathrm{n}, \mathrm{p}) \mathrm{n}-\mathrm{known}$ and p unknown and $\mathrm{H}_{1}: \mu=\mu_{0}$ where $\mathrm{X} \sim \mathrm{N}$ (μ, σ^{2}) σ^{2} unknown, then H_{0} and H_{1} are simple null hypothesis.
(d) Frequency density of a class for any distribution is the ratio of total frequency to class width.
(e) If X and Y are independent r.v.'s with $M_{X}(t)$ and $M_{Y}(t)$ as their m.gf's respectively, then

$$
\mathrm{M}_{\mathrm{X}}+\mathrm{Y}(\mathrm{t})=\mathrm{M}_{\mathrm{X}}(\mathrm{t}) \mathrm{M}_{\mathrm{Y}}(\mathrm{t})
$$

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा

दिसम्बर, 2011
ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-11 : प्रायिकता और सांख्यिकी

समय : 2 घण्टे
अधिकतम अंक : 50
नोट : प्रश्न संख्या 7 करना जरूरी है। प्रश्न संख्या 1 से 6 तक से कोई चार प्रश्न कीजिए। कैलकुलेटर का प्रयोग करने की अनुमति नहीं है।

1. (a) तीन घटनाएं A, B और C हैं। निम्नलिखित घटनाओं 3 को समुच्चय व्यंजक में निरूपित कीजिए।
(i) A, B और C के एक साथ घटने को।
(ii) इनमें से कम से कम एक के घटने को।
(iii) घटनाऐं A और B दोनी घटती हैं लेकिन C नहीं घटित होती है।
(iv) घटना B घटित होती है लेकिन घटना A नहीं घटित होती है।
(v) A, B और C में से एक से अधिक नहीं घटित हो।
(b) यदि एक यादृच्छिक चर X का आधूर्णजनक फलन (m.g.f.) $\mathrm{M}_{\mathrm{X}}(\mathrm{t})=\exp \left(3 \mathrm{t}+32 \mathrm{t}^{2}\right)$ है, तो X का माध्य और मानक विचलन ज्ञात कीजिए और $\mathrm{P}(x<3)$ भी परिकलित कीजिए।
(c) एक यादृच्छिक चर X का प्रायिकता घनत्व फलन $\mathrm{f}(x)=\mathrm{C}|x|$ है।
C का मान और x_{o} का वह मान जिसके लिए $\mathrm{F}_{\mathrm{X}}\left(x_{\mathrm{o}}\right)=\frac{3}{4}$ है ज्ञात कीजिए।
2. (a) पाँच अनभिनत पासों को 96 बार फेंका गया और पासों पर 4,5 या 6 के आने की संख्या को निम्नलिखित सारणी में दिया जाता है।

4,5 या 6 दिखाने वाले पासों की संख्या	0	1	2	3	4	5
बारम्बारता	1	10	24	35	18	8

5% सार्थकता स्तर पर परीक्षण कीजिए कि ये आंकड़े द्विपद बटने से प्राप्त होते हैं या नहीं। आप निम्नलिखित मानों को प्रयोग कर सकते हैं। $\left(x_{5}^{2} 10.05\right)=11.07$, $\left.\chi_{6}^{2}(0.05)=12.59, \chi_{7}^{2}(0.05)=14.07\right)$.
(b) 100 मैदानों की समूह बारम्बारता बंटन के रूप में पैदावर (कि.ग्रा. में) नीचे दी गयी है।

पैदावर (किग्रा में)	बारम्बारता
$0-20$	6
$20-40$	21
$40-60$	35
$60-80$	30
$80-100$	8

(i) उन मैदानों की संख्या ज्ञात कीजिए जिनकी पैदावर है :
(A) 40 से 80 किग्रा.
(B) 10 से 70 किग्रा.
(ii) पैदावार का माध्य और मानकविचलन ज्ञात कीजिए।
3. (a) मान लीजिए कि $\mathrm{XE}(x)=3$ और $\operatorname{var}(\mathrm{X})=7$ वाला एक गामा चर है। गामा बंटन के प्राचल α और λ ज्ञात कीजिए।
(b) दिये गये X और Y के द्विचर प्रायिकता बंटन
$\mathrm{P}(\mathrm{X}=x, \mathrm{Y}=y)=\frac{x^{2}+y}{32}$ for $x=0,1,2,3$ और $y=0,1$ के लिए :
(i) $\mathrm{P}(\mathrm{X} \leq 1, \quad \mathrm{Y}=1)$ (ii) $\quad \mathrm{P}(\mathrm{X} \leq 1)$
(iii) $\mathrm{P}(\mathrm{Y}>0)$ और
(iv) $\mathrm{P}(\mathrm{Y}=1 \mid \mathrm{X}=3)$

ज्ञात कीजिए।
(c) माध्य 0 और प्रसरण σ^{2} वाले प्रसामान्य बंटन के लिए दर्शाइये कि:
$\mathrm{E}(1 \times 1)=\sqrt{\frac{2}{\pi}} \sigma$.
4. (a) एक कारखानें में तीन संयंत्रों से लोहे के पाईप प्रतिदिन 5 क्रमश: 500,1000 और 2000 बनते हैं। पुराने अनुभवों से ज्ञात होता है कि प्रत्येक संयत्र द्वारा खराब पाईप बनने के क्रमशः $0.005,0.008$ और 0.010 हैं। यदि एक पाईप प्रतिदिन बने हुए पाईपों में से यादृच्छया चुना जाता है और खराब पाया जाता है तो यह पाईप किस संयत्र से बना होगा।
(b) मान लीजिए $X_{1}, X_{2}, \ldots, X_{n}$ निम्नलिखित घनत्व फलन वाले बंटन से लिया गया आमाप n वाला एक यादृच्छिक प्रतिदर्श है। $\mathrm{f}(\mathrm{X} ; \theta)=\theta \mathrm{X}^{\theta-1}, 0<X<1,0>0$

$$
=0 \quad \text { अन्यथा }
$$

θ का एक अधिकतम संभावित आकलक प्राप्त कीजिए।
5. (a) मान लीजिए कि $X_{1}, X_{2}, \ldots, X_{n}$ स्वतन्त्र और अभिन्त 4 बंटित $\mathrm{b}(1, \mathrm{p})$ वाले यादृच्छिक चर हैं। शेवीशेव असमिका का प्रयोग करके p का विश्वस्यता अन्तराल ज्ञात कीजिए।
(b) सेना के 25 कर्मचारियों के लिए, हददय के वजन (X) पर गुर्दे के वजन (Y) की समाश्रयण रेखा $\mathrm{Y}=0.399 \mathrm{X}+6.934$ और गुर्दे के वजन पर हृदय के वजन की समाश्र्यण रेखा $\mathrm{X}-1.212 \mathrm{Y}+2.461=0$ है। X और Y के बीच सहसम्बन्ध गुणांक ज्ञात कीजिए और उनके माध्य मान ज्ञात कीजिए।
(c) यदि n स्वातंत्र्या कोटि वाले एक यादृच्छिक चर u का t - बंटन हैं, तो u^{2} का बंटन ज्ञात कीजिए।
6. (a) मान लीजिए कि X एक $n=100$ और $p=0.1$ वाला 3 द्विपद चर है।
(i) प्रासामान्य बंटन
(ii) प्वांसा बंटन

का प्रयोग करके $\mathrm{P}(10 \leq \mathrm{X} \leq 12)$ का सत्रिकटन मान ज्ञात कीजिए।
[आप निम्नलिखित मानों का प्रयोग कर सकते हैं।
$P(Z \leq 0.67)=0.7486$
$P(Z \leq 0.33)=0.6293$
$\mathrm{P}(\mathrm{Z} \leq 0)=0.5]$
(b) दिये गये बंटन 3
$\mathrm{P}(\mathrm{X}=x)=\frac{2}{3}\left(\frac{1}{3}\right)^{x} x=0,1,2, \ldots \ldots$ के लिए X
का आघूर्णजनक फलन, माध्य और प्रसरण ज्ञात कीजिए।
(c) एक बंटन का माध्य 10 , प्रसरण 16 , वैषम्य $\mathrm{sk}_{4}+1$ और ककुदता $b_{2} 4$ है। मूल बिन्दु यानि O के सापेक्ष पहले चार आघूर्ण ज्ञात कीजिए। बंटन की प्रकृति पर टिप्पणी दीजिए।
7. निम्नलिखित कथन सत्य है या असत्य लिखिए, और अपने उत्तरों के कारण दीजिए। $5 \times 2=10$
(a) प्वांसा बंटन, द्विपद बंटन का $\mathrm{n} \rightarrow \infty, \mathrm{p} \rightarrow 1$ और $\mathrm{np} \rightarrow_{\infty}$ के लिए एक सीमात्व मान है।
(b) दो स्वतंत्र घटनाओं A और B के लिए यदि $\mathrm{P}(\mathrm{A})=0.2$ और $\mathrm{P}(\mathrm{B})=0.4$ हैं तो $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.6$ होगा।
(c) यदि $\mathrm{H}_{0}: \mathrm{P} \leq 0.6$ और $\mathrm{X} \sim \mathrm{B}(\mathrm{n}, \mathrm{p})$ जहां n ज्ञात है और p अज्ञात है, और $\mathrm{H}_{1}: \mu=\mu_{0}$ जहां $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ o^{2} अज्ञात है, तो H_{0} और H_{1} सरल निराकरणीय परिकल्पनाएं हैं।
(d) किसी भी बंटन के लिए वर्ग का बारम्बारता घनत्व उसकी कुल बारम्बारता और वर्ग चौड़ाई का अनुपात होता है।
(e) यदि X और Y क्रमश: $\mathrm{M}_{\mathrm{X}}(\mathrm{t})$ और $\mathrm{M}_{\mathrm{Y}}(\mathrm{t})$ आघूर्णजनक फलन वाले यादृच्छिक चर है तो

$$
\mathrm{M}_{\mathrm{X}}+\mathrm{Y}(\mathrm{t})=\mathrm{M}_{\mathrm{X}}(\mathrm{t}) \mathrm{M}_{\mathrm{Y}}(\mathrm{t}) \text { होगा। }
$$

