MMTE-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2011

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50
Note: Answer any five questions. Calculators are not allowed.

1. (a) Describe the various possible attacks on a 5 Cryptosystem briefly.
(b) Carry out one round of encryption of the text 101001101101 using toy block cipher with the key 101111010. The S - boxes are given below :
$S_{1}\left[\begin{array}{llllllll}101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011\end{array}\right]$
$S_{2}\left[\begin{array}{llllllll}100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 100\end{array}\right]$
2. (a) Encrypt the text " THE LIGHT HAS GONE OUT OF OUR LIVES", first using columnar transformation of length and followed by the permutation cipher with the key

1	2	3	4
3	2	4	1

Is the combined transformation a transposition cipher or a substitution cipher? Justify your answer.
(b) Explain how you will construct a LFSR corresponding to a recurrence

$$
\left\{x_{\mathrm{n}+\mathrm{k}} \equiv a_{\mathrm{k}-1} x_{n+\mathrm{R}-1}+a_{\mathrm{k}-2} x_{n+\mathrm{R}-2}+. .+a_{0} x_{n}(\bmod 2)\right\}
$$

Construct the LFSR corresponding to the recurrence.

$$
x_{n+5} \equiv x_{n+4}+x_{n+3}+x_{n+1}+x_{n}(\bmod 2)
$$

3. (a) Find the order of all the elements in Z_{15}. Is 4 the group cyclic? Justify your answer.
(b) Describe the serial test to check whether a 4 given sequence of bits is pseudo random or not. Apply the test to the following sequence.
011001010111101110010100
[You may like to use the following values :

$$
\begin{aligned}
& \chi_{0.05,1}^{2}=3.84146 \chi_{0.05,2}^{2}=5.99146 \\
& \left.\chi_{0.05,3}^{2}=7.81473 \quad \chi_{0.05,4}^{2}=9.48773\right]
\end{aligned}
$$

(c) Check whether $x^{2}+5 x+5$ is irreducible over
 2

 F_{7}.4. (a) Show that, if there are n persons in a room, 4 $p(n)$, the probability that 2 persons have the same birthday is $1-\prod_{i=1}^{n-1}\left(1-\frac{i}{365}\right)$. Derive the approximation $p(n) \approx 1-e^{-n^{2} / 730}$.
(b) Construct the addition and multiplication
tables for $\frac{F_{3}[x]}{\left(x^{2}+1\right)}$.
5. (a) Apply extended Euclidean algorithm to find a and b such that $253 a+391 b=d$, where d is the greatest common divisor of 253 and 391.
(b) Explain the Merkle - Damgard 4 strengthening. Assuming a block size of 64 bits and that we use 8 bits to represent a character, what string will you get by applying Merkle - Damgard strengthening to the string "Digitalsignatures" ?
(c) Suppose you know that $\mathrm{n}=328021$ is a product of two primes and $\phi(n)=326700$. Factorise n using this information.
6. (a) Let $\mathrm{n}=17.19$ and $\mathrm{e}=173$ be the parameters for RSA encryption. If the cipher text is 96 , find the plain text.
(b) Bob is using 43 as the prime for the El Gamal 2 cryptosystem and 3 as the primitive root. His secret exponent is 2 . He receives the pair $(27,39)$ from Alice where 39 is the message and $27=3^{3}$. Decrypt the message.
(c) Explain the Miyaguchi - Preneel method for constructing a hash function from a block cipher.
