M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
 $1 n$ M 10 0
 Term-End Examination
 December, 2011

MMTE-003 : PATTERN RECOGNITION AND IMAGE PROCESSING

Time : 2 hours

Maximum Marks : 50

Note: Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed.

1. (a) Propose a gray level slicing algorithm 4 capable of producing the 4 -th bit plane of an 8 - bit monochrome image.
(b) Assume that the histogram of an image is 6 Gaussian
$p r(r)=\frac{1}{\sqrt{2 \pi \sigma}} \mathrm{e}^{-\frac{(\mathrm{r}-\mathrm{m})^{2}}{2 \sigma^{2}}}$
Which transformation function would you use for histogram equalization?
2. (a) Briefly explain the following :
(i) Unsharp marking
(ii) High boost filtering
> (iii) High frequency emphasis filtering. Give application of each of these filtering techniques.
(b) Given an image $f(x, y)$ with Fourier transform
$F(u, v)$ obtain the fourier transform of $(-1)^{x+y} . f(x, y)$.
(c) Given that the 2-D Fourier Transform is real3 and even, obtain the constraints on the image characteristics.
3. (a) (i) In Image restoration, how are the noise parameters estimated?
(ii) Assume that the noise is estimated as exponential, with mean μ and variance σ^{2}. How will you estimate the parameter ' a ' of pdf of exponential noise?

(b) Explain the functioning of an adaptive, local
noise reduction filter.
4. (a) Show that Sobel masks can be implemented 5 by one pass of differencing mask of the form [-101] (or its vertical counterpart) followed by a smoothing mask of the form [121] (or its vertical counterpart).
(b) (i) Explain the Hough transform for edge 5 linking.
(ii) Why is the normal representation of line preferred? Obtain the normal representation of the line $y=-2 x+1$
5. (a) Describe both spatial and frequency domain enhancement techniques.
(b) Describe briefly the watershed segmentation 3 Algorithm.
(c) Define image segmentation. Discuss region 3 based segmentation in detail.
6. (a) The following pattern classes have Gaussion probability density function $\mathrm{W}_{1}:\left\{(0,0)^{\mathrm{T}},(4,0)^{\mathrm{T}},(4,4)^{\mathrm{T}},(0,4)^{\mathrm{T}}\right\}$ and $\mathrm{W}_{2}:\left\{(6,6)^{\mathrm{T}},(8,6)^{\mathrm{T}},(8,8)^{\mathrm{T}},(6,8)^{\mathrm{T}}\right\}$. Assume $p\left(w_{1}\right)=p\left(w_{2}\right)=1 / 2$. Obtain the equation of Baye's decision boundary between these two classes.
(b) Define Principal Component Analysis. Derive the transformation matrix used for transformation where the data belongs to \mathbf{R}^{d}. Interpret the transformation and its significance.

