M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) (MACS) M.Sc. (MACS)

Term-End Examination
December, 2011
MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours
Maximum Marks : 50
Note: Answer any five questions. Calculators are not allowed.

1. (a) Does the array 5

3	6	2	5	2	8	2	1	4	1

represent a max heap? Justify your answer.

- If it doesn't, show how this can be converted into a max heap using MAX-HEAPIFY algorithm. Represent the max heap as a binary tree.
(b) Let T (n) be a function satisfying the recurrence

$$
\mathrm{T}(\mathrm{n})=\mathrm{T}\left(\left\lceil\frac{\mathrm{n}}{2}\right\rceil\right)+\mathrm{T}\left(\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor\right)+1, \mathrm{~T}(1)=1
$$

Prove by induction that $T(n)$ satisfies a bound of the form $T(n) \leq(n-b)$ for appropriately chosen values of c and b. Also find appropriate values of b and c.
(c) For carrying out certain task, there are two algorithms, A and B. Algorithm A takes $\mathrm{n}^{2}+1000$ operations to complete the task and algorithm B takes $65 n$ operations to complete the task, where n is the size of the input. Find a no $\in \mathrm{N}$ such that for any input of size greater than no, algorithm B performs better than algorithm A.
2. (a) Find an optimal parenthesisation of a matrix chain product whose sequence of dimensions is given by $\{4,6,30,8,9\}$.
(b) Illustrate all steps of Robin - Karp - Miller string matching algorithm for $\mathrm{P}=1035$, $T=140610216$. and $Q=7$.
3. (a) Explain the algorithm design divide and conquer approach using merge sort.
(b) Illustrate MERGE procedure of MERGE SORT using the array $\{1,4,6,7\}$ and $\{2,5,8,9,11\}$.
(c) Explain the Prim's algorithm using pseudo 5 code for finding the minimal spanning tree in a graph. Use it to find the minimal spanning tree in the following graph.

4. (a) Illustrate the procedure PARTITION, used in quick sort, using the array.
$A=\{3,5,2,7,1,4\}$
(b) Explain with the help of an example that 4 greedy strategy does not always yield optimal solution for optimisation problems.
(c) Compute the DFT of the vector $(2,2,-1,1)$
5. (a) Explain why there is no solution for the 6 shortest path problem in a weighted directed graph if it contains a cycle of negative weight. Explain the Bellman - Ford algorithm with the help of the following graph with r as the source vertex.

(b) Explain the counting sort algorithm using 4 the array

$$
A=\{1,3,2,1,5,2,6\}
$$

6. (a) Explain the INORDER - TREE - WALK (x) procedure with pseudo code. Show that, if x is the roof of an n - mode sub tree, then the call INORDER - TREE - WALK (x) takes $(\mathrm{H})(\mathrm{n})$ times.
(b) Find $7^{562}(\bmod 563)$ using modular 4 exponentiation algorithm.
