M.Sc. (Mathematics with Applications

in Computer Science) (MACS)

Term-End Examination

December, 2011

MMTE-001: GRAPH THEORY

Time : 2 hours Maximum Marks : 50

Note: Question No. 1 is compulsory and answer any four from the rest six ($2-7$). Calculators and similar devices are not allowed.

1. State, giving justifications or illustrations, whether each of the following statements is true or false.

$$
5 \times 2=10
$$

(a) The isomorphism relation on the set of all simple graphs is an equivalence relation.
(b) K_{n} is not bipartite for $n \geqslant 3$.
(c) Every four colourable graph is planar.
(d) There exists a tree with degree sequence (3, 3, 2, 2, 2).
(e) Every Hamiltonian graph is Eulerian.
2. (a) Draw a regular simple graph G with 4 9 vertices and 18 edges.
(b) In the graph given below give the following 6 with justification.

(i) A matching of maximum size.
(ii) A vertex cover of minimum size.
(iii) An independent set of vertices of maximum size.
3. (a) Use induction (on n) to prove that if
$d_{1}, d_{2}, \ldots . . d_{n}$ are non - negative integers and Σd_{i} is even, then there is an n-vertex graph with vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$.
(b) Explain how to construct the Priifer code of a tree? Show that distinct trees have distinct Priifer codes.
4. (a) Define the Hamiltonian closure of a graph.

5
Show that if the closure of a graph G is Hamiltonian, then G is Hamiltonian.
(b) Show that if G is Eulerian, its line graph is 5 Hamiltonian. Give a counter example to show that the converse is not true.
5. (a) Determine $k(\mathrm{G}), k^{1}(\mathrm{G})$ and $\delta(\mathrm{G})$ for each of 5 the graph given below :

(b) Prove that a planar graph G is bipartite if 5 and only if every face G has even length.
6. (a) Prove that a graph G in k-partite if and only 4 if it is k-colourable.
P.T.O.
(b) Describe Prim's algorithm to find a minimum spanning tree. Apply Prim's algorithm to find a minimum spanning tree for the graph given below :

7. (a) Consider the problem of colouring the 4 regions of the following maps :

For each of the maps draw the corresponding graph and find its chromatic number.
(b) Draw the graph whose incidence matrix is 6
$\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1\end{array}\right]$

What is the adjacency matrix of this graph.

