No. of Printed Pages : 4

MMTE-001

M.Sc. (Mathematics with Applications in Computer Science) (MACS)

Term-End Examination

December, 2011

MMTE-001 : GRAPH THEORY

Time : 2 hours

S

503

Maximum Marks : 50

Note: Question No. 1 is compulsory and answer any four from the rest six (2 - 7). Calculators and similar devices are not allowed.

1. State, giving justifications or illustrations, whether each of the following statements is *true* or *false*.

5x2 = 10

- (a) The isomorphism relation on the set of all simple graphs is an equivalence relation.
- (b) K_n is not bipartite for $n \ge 3$.
- (c) Every four colourable graph is planar.
- (d) There exists a tree with degree sequence (3, 3, 2, 2, 2).
- (e) Every Hamiltonian graph is Eulerian.

MMTE-001

1

P.T.O.

- 2. (a) Draw a regular simple graph G with 49 vertices and 18 edges.
 - (b) In the graph given below give the following **6** with justification.

- (i) A matching of maximum size.
- (ii) A vertex cover of minimum size.
- (iii) An independent set of vertices of maximum size.
- 3. (a) Use induction (on n) to prove that if 5 d₁, d₂, d_n are non negative integers and Σd_i is even, then there is an *n*-vertex graph with vertex degrees d₁, d₂,, d_n.
 - (b) Explain how to construct the Priifer code of 5 a tree ? Show that distinct trees have distinct Priifer codes.

MMTE-001

- 4. (a) Define the Hamiltonian closure of a graph.Show that if the closure of a graph G is Hamiltonian, then G is Hamiltonian.
 - (b) Show that if G is Eulerian, its line graph is Hamiltonian. Give a counter example to show that the converse is not true.
- 5. (a) Determine k(G), $k^1(G)$ and $\delta(G)$ for each of 5 the graph given below :

- (b) Prove that a planar graph G is bipartite if 5 and only if every face G has even length.
- 6. (a) Prove that a graph G in *k*-partite if and only **4** if it is *k*-colourable.

MMTE-001

P.T.O.

5

5

(b)

7.

Describe Prim's algorithm to find a minimum spanning tree. Apply Prim's algorithm to find a minimum spanning tree for the graph given below :

(a) Consider the problem of colouring the 4regions of the following maps :

For each of the maps draw the corresponding graph and find its chromatic number.

(b) Draw the graph whose incidence matrix is

1	1	1	1	0	0	0	0	
1	1	0	0	1	1	0	0	
0	0	0	1	0	1	1	1	
0	0	1	0	1	0	1	1	

What is the adjacency matrix of this graph.

MMTE-001

6

6

4