Term-End Examination
December, 2011

MMT-007 (P) : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : $11 / 2$ hours
Maximum Marks : 40
Note: There are two questions in this paper totalling 30 marks. Answer both of them. Remaining $\mathbf{1 0}$ marks are for the viva-voce.

1. Write a 'C' program to solve the boundary value $\mathbf{1 5}$ problem

$$
\begin{aligned}
& y^{\prime \prime}=y-4 x \mathrm{e}^{x}, 0<x<1 \\
& y(0)-y^{\prime}(0)=-1, \quad y(1)+y^{\prime}(1)=-\mathrm{e}
\end{aligned}
$$

using the shooting method. Use the Taylor series method.
$y_{i+1}=y_{i}+\mathrm{h} y_{\mathrm{i}}^{\prime}+\frac{\mathrm{h}^{2}}{2} y_{\mathrm{i}}^{\prime \prime}+\frac{\mathrm{h}^{3}}{6} y_{\mathrm{i}}^{\prime \prime \prime}$
$y_{i+1}^{\prime}=y_{i}^{\prime}+\mathrm{h} y_{\mathrm{i}}^{\prime} \frac{\mathrm{h}^{2}}{2} y_{\mathrm{i}}^{\prime \prime}$,
With $\mathrm{h}=0.2$ to solve the resulting initial value problems.
2. Write a ' C ' program to solve the equation

$$
\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^{2} \mathrm{u}}{\partial x^{2}}, 0<x<1, \mathrm{t}>0
$$

,where $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0, \mathrm{t}>0, \mathrm{u}(x, 0)=2 x$, using the Crank-Nicolson method. Obtain the value of $\mathrm{u}\left(\frac{1}{2}, \frac{1}{8}\right)$ by taking $\mathrm{h}=\frac{1}{4}, \mathrm{k}=\frac{1}{16}$.

