M.Sc. (MATHEMATICS WITH APPLÍCATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination 00639
December, 2011

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
Note: Question No. 1 is compulsory. Do any four questions out of the remaining questions 2-7. All computations may be kept to 3 decimal places. Use of calculators is not allowed.

State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example.

1. (a) For the differential equation

$$
\begin{aligned}
& x^{2}(x-2)^{2} y^{\prime \prime}+3(x-2) y^{\prime}+(x+7) y=0, \\
& x=0, \text { is an irregular singular point. }
\end{aligned}
$$

(b) If $\int_{-1}^{1} \mathrm{P}_{\mathrm{n}}(x) \mathrm{d} x=2$, then n is 1 .
(c) The inverse Fourier transform of

$$
\frac{1}{(\mathrm{i} \alpha+\mathrm{k})^{2}}, \mathrm{k}>0
$$

$$
\text { is } \int_{-\infty}^{\infty} \mathrm{e}^{-\mathrm{k} \tau} \mathrm{H}(\tau) \mathrm{e}^{-\mathrm{k}(x-\tau)} \mathrm{H}(x-\tau) \mathrm{d} \tau
$$

where $H(\tau)$ is the Heavi side step function.
(d) The interval of absolute stability of the Euler's method is $-2<\lambda h<0$.
(e) The function $y(t)$ satisfying the integral equation

$$
\begin{aligned}
& y(t)=\sin 2 t+\int_{0}^{t} y(t) \sin 2(t-\tau) d \tau \text { is } \\
& y(t)=\sqrt{2} \sin \sqrt{2} t .
\end{aligned}
$$

2. (a) Using Laplace transform technique solve the following initial value problem

$$
\begin{aligned}
& y_{1}^{\prime \prime}=y_{1}+3 y_{2} ; y_{2}^{\prime \prime}=4 y_{1}-4 \mathrm{e}^{\mathrm{t}} \\
& y_{1}(0)=2, y_{1}^{\prime}(0)=3 ; y_{2}(0)=1, y_{2}^{\prime}(0)=2
\end{aligned}
$$

(b) Prove that

$$
\begin{aligned}
& \int_{-1}^{1} x^{2} P_{n+1}(x) P_{n-1}(x) d x= \\
& \frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)} .
\end{aligned}
$$

3. (a) Solve the following differential equation by the power series method about $x=0$:
$x^{2} y^{\prime \prime}+\left(x^{2}+x\right) y^{\prime}+(x-9) y=0$
(b) If $f(x)=3 \mathrm{e}^{-|2 x|}-4 \mathrm{e}^{2|x+3|}$, find the Fourier transform of $f(x)$.
(c) Using inverse Fourier cosine transform, find 3 $f(x)$ if

$$
F_{c}(\alpha)=\left\{\begin{array}{cc}
\left(a-\frac{\alpha}{2}\right), & \alpha \leq 2 a \\
0, & \alpha>2 a
\end{array}\right.
$$

4. (a) Expand $f(x)=x^{2}$ in terms of Fourier-Bessel series in the interval $0<x<2$, in terms of $\mathrm{J}_{2}\left(\alpha_{\mathrm{n}} x\right)$ where α_{n} are the roots of $\mathrm{J}_{2}(2 \alpha)=0$.
(b) Derive the method
$y_{i+1}=\mathrm{a}_{1} y_{i}+\mathrm{a}_{2} y_{i-1}+\mathrm{hb}_{0} y^{\prime}{ }_{i+1}$ for solving the initial value problem
$\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x, y), y\left(x_{0}\right)=y_{0}$. Find the truncation error and the order of the method.
5. (a) Using Crank - Nicholson's method
solve $u_{t}=\frac{1}{16} u_{x x}, 0<x<1, t>0$
given $u(x, 0)=0, u(0, t)=0, u(1, t)=50 t$
Take $\lambda=\frac{1}{16}$ and $\mathrm{h}=\frac{1}{4}$.
(b) Find the solution of equation
$y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{1}{4 x^{2}}\right) y=0$ in terms of sine and cosine functions.
6. (a) Construct Green's function for the following 5 boundary value problem :

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-k^{2} y=\mathrm{e}^{3 x}, y(0)=y(1)=0
$$

(b) Using second order finite difference method
with $h=\frac{1}{2}$, obtain the system of equations
for y_{0}, y_{1}, y_{2} for solving the boundary-value problem :

$$
\begin{gathered}
y^{\prime \prime}-5 y^{\prime}+6 y=3 \\
y(0)-y^{\prime}(0)=-1, y(1)+y^{\prime}(1)=1
\end{gathered}
$$

7. (a) Find $y(0.1), y(0.2), y(0.3)$ from

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-y, y(0)=1
$$

by using Taylor series method. Hence obtain $y(0.4)$ using Adam-Bashforth method with predictor P and corrector C as follows :
$P: y_{n+1}^{P}=y_{n}+\frac{h}{24}\left(55 y_{n}^{\prime}-59 y_{n-1}^{\prime}+37 y_{n-2}^{\prime}-9 y_{n-3}^{\prime}\right)$
$C: y_{n+1}^{C}=y_{n}+\frac{h}{24}\left(9 y_{n+1}^{\prime}-19 y_{n}^{\prime}-5 y_{n-1}^{\prime}+y_{n-2}^{\prime}\right)$
(b) Consider a steel plate of size $15 \mathrm{~cm} \times 15 \mathrm{~cm}$. 5 If two of the sides are held at $100^{\circ} \mathrm{C}$ and the other two sides are held at $0^{\circ} \mathrm{C}$, determine the steady state temperature at interior points assuming a grid size of $5 \mathrm{~cm} \times 5 \mathrm{~cm}$. Use five - point formula.

