No. of Printed Pages : 4

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination

December, 2011

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours

Maximum Marks : 50

Note : Answer question number **1** which is **compulsory**. Attempt **any four** of the remaining six questions.

- Are the following statements *true* or *false*? Justify your answer with the help of a short proof or counter example. 5x2=10
 - (a) The sum of two norms on a vector space is again a norm.
 - (b) The space of all polynomials with real coefficients can be made into a Banach space with a suitable norm.
 - (c) The dual space of l^{∞} is isometrically isomorphic to l^1 .
 - (d) If $\{x_1, x_2, \dots, x_n\}$ is an orthogonal set in a

Hilbert space H, then $\|\sum x_i\|^2 = \sum_{i=1}^n \|x_i\|^2$.

MMT-006

1

P.T.O.

- (e) If A and B are positive operators on a Hilbert space H, then so is AB.
- (a) State Hatin Banach Extension Theorem. 4
 Give an example to show that Hatin Banach extensions need not be unique.
 - (b) If every absolutely convergent series in a 3 normed linear space X is convergent, then show that X is complete.
 - (c) If A is a bounded linear operator A on a 3 Hilbert space H satisfies the condition that ||Ax || = ||A*x|| for all x in H, prove that A is normal.
- 3. (a) Show that the map *f* defined on L'[0, 1] by 3 $f(x) = \int_0^1 t x(t) dt$, for x in L'[0, 1] is a bounded linear functional on L'[0, 1].
 - (b) Show that a subspace of a reflexive space is 4 reflexive if and only it is closed.
 - (c) Show that a subspace S of a Hilbert space 3 H is dense if and only if $S^{\perp} = (0)$.

MMT-006

2

- 4. (a) Let X₁ be a Banach space, X₂ a normed 5 linear space and τ a subset of BL(X, Y) such that for each x ∈ X₁, the set {T(x) : T ∈ τ} is bounded in X₂. Then for each bounded subset S of τ, show that the set {T(x) : x ∈ S, T ∈ τ} is bounded in X₂.
 - (b) Let $M = \{x \in l^2 : x(2n) = 0 \text{ for all } n\}$. What is 3 M^{\perp} ?
 - (c) Let X be a finite dimensional space. Then **2** show that any operator $T : X \rightarrow X$ is compact.
- 5. (a) Give two inequivalent norms on C'[0, 1]. 4Justify your answer.
 - (b) Let X be a Banach space and Y be a closed 3subspace of X. Show that X/Y is a Banach space.
 - (c) If M is a subspace of a Hilbert space H, show 3 that $M^{\perp} = M^{\perp \perp \perp}$.
- 6. (a) Find a bounded linear map 3 $T: C[0, 1] \rightarrow C[0, 1]$ with $\sigma(T) = [0, 1]$.
 - (b) Let X be an inner product space and let 2
 x, y ∈ X. Suppose that {a_n} is a sequence of scalars converging to a scalar a, prove that

$$\langle a_n x, y \rangle \rightarrow \langle ax, y \rangle$$
 in X.

(c) Identify the dual space of l'.

MMT-006

P.T.O.

5

- 7. (a) Prove that any compact self adjoint 3 operator on a Hilbert space has an eigen value.
 - (b) Prove or disprove : Any linear map between 3 normed linear spaces with closed graph is bounded.
 - (c) Let T : X → Y be a linear transformation 4
 between the two normed spaces X and Y.
 If T is continuous at O, then show that T is uniformly continuous. Give an example to show that this result is not true if the linearity condition of T is dropped.