M.Sc. (MATHEMATICS WITH
 APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)
 Term-End Examination

December, 2011
MMT-005 : COMPLEX ANALYSIS
Time : $11 / 2$ hours
Maximum Marks : 25
Note: Question No. 1 is compulsory. Attempt any three questions from question number 2 to 5 . Use of calculator is not allowed.

1. State giving reasons whether the following statement are true or false :
$5 \times 2=10$
(a) If $f(z)=\frac{e^{z}+\sin z}{(Z+2)^{100}}$ then $\oint_{C} f(z)=\frac{\pi}{(4)^{100}}$
where C is the circle $|z|=\frac{\pi}{2}$.
(b) The radius of convergence of the complex power series $\sum_{n=1}^{\infty}\left(\frac{6 n+1}{2 n+5}\right)^{n}(z-2 i)^{n}$ is 3 .
(c) For any two complex numbers z_{1} and z_{2} $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$ where $\operatorname{Arg}(z)$. denotes the principal argument of z.
(d) $f(z)=\frac{z}{e^{z}-1}$ has removable singularity at the origin $z=0$.
(e) The linear fractional transformation mapping points $-1,0,2$ onto points 0,1 , ∞ is $\frac{2 z+2}{-z+2}$.
2. (a) Verify that the function
$u(x, y)=x^{3}-3 x y^{2}-5 y$ is harmonic in the entire complex plane and find the harmonic conjugate function of u.
(b) If $f(z)=-i z+i$ for $|z| \leq 5$ then show that 2 $f(z)$ attains its maximum value when $z=-5$.
3. (a) Evaluate the given integral where C is the contour in the following figure :

(b) Expand $f(z)=\frac{\cos z}{z}$ in Laurent series valid 2 for the region $|z|>0$. Write down the principal part of the series obtained.
4. (a) Find the poles of the function

$$
f(z)=\frac{1}{(z-1)^{2}(z-3)} \text { and residues at these }
$$

poles. Hence evaluate $\oint_{\mathrm{C}} f(z) d z$ where C is the circle $|z|=2$.
(b) Define conformal mapping. Find all points where the mapping $f(z)=\left(z^{2}+1\right) e^{z}$ is conformal.
5. Evaluate the Cauchy principal value of 5

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x\left(x^{2}-2 x+2\right)} d x
$$

