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MMT-004 : REAL ANALYSIS
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Note : Question no. 1 is compulsory. Do any four questions
out of questions no. 2 to 7. ‘

1. State, whether the following statements are

TRUE or FALSE. Give reasons for your answer.
5x2=10
(@) If(xq,dy) and (x,, d,) are two discrete metric
spaces, then the product metric on
X; X X, is discrete.

(b) Theset [0,1) U [1, 2] is a connected subset
of R with respect to the standard metric.

() The function f : RZ—»R? defined by
f(x y) = (x3—y? 2 xy) is not invertable.

4(d) The union of an open subset of R and a
closed subset of R can not be measurable.
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(e) The function f: R— R defined by

1, when x € [n, n+~;-)

f (x)= ] nez

0, when x € [n+§,n+1)
is continuous almost everywhere on R.

2. (@) Letdand Dbe rhetrices definedonRxRas . 3
d ((xy, %), Wy, Y)) =l =1l +|x— 3l

D ((xy, %), (1, ¥2)) = \/(xl’yl )2 + (x2-Y2 )2

Show that d and D equivalent metrices on RZ

(b) State Dominated convergence Theorem. 4

. .3 lim (!
Use this theorem to find /'0} fofn (x) dx

where fn (x)=__* .
1+ n?x?

(c) Find the convolution f * g of the folldwing 3
functions fand g :

/5

—  o<t<1
1-2 (1-t)/5

f®=

g(t)=1—2t%, O<t<1
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4. (a)
(b)
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Let (x, dy) and (y, d,) be metric spaces. Let
xge x. If f(x, dy)— (y, dy) is continuous at x
then show that for every sequence {x,} in x
converging to x,, the sequence {f (x,)}
converges to f (xg) in y. Is the converse
true ? Justify your answer.

Find the Fourier series for the function

= =5,if —wm<t<0

FO=1 5if0<t<m

Let Py : R3 R be the projection function
defined by P; (x, y)=xv (x, ¥) € R2. Show

that P; is continuous.

State inverse function theorem. Use this
theorem to check whether the function
f: R4S R3 defined by f (x, y, 2) = (x+y+2,2
eY cos x, 2 €Y sin x) is locally invertable at
(1,1, 1).

Let { E } be a sequence of pairwise disjoint
measurable sets. Show that

m(DEi)= im(Ei)
1=1

1=1



(b)

(c)

(b)

(©)
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Define the following in the context of signals
and systems and give one example for each.
Justify your choice of example.

(i) Time invariant.

(ii) Casual system.

Let the function f : R* - R3 be defined by
fexy z,w) = (x2y,y?z 22 x). Find f (a) at
a=(1,2,—-1,-2) *

Let (x, d) be a metric space. Let F be a closed
subset and k be a compact subset of x.
Show that F~K is compact in x.

Let (x, d) be a metric space and A be a
non-empty subset of x. Show that

A={x:d(x,A)=0}.

For the following sets, find m*A and check

whether they are measurable.

@ A={0,1} U{«x: xis a solution of
sin x =0}

(i) B={x:xisrationalin[2,3]}

Let the frequency response H (i W) be given

1 -W<cw<W .
b : =
.y H(@Iw) { 0 otherwise

Find the system response to the signal

i2¢ i2¢
h)=e7 + 4e5 + 7el20t
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(b)
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Show that the continuous image of a

_compact connected metric space is both

compact and connected.
Find the extreme values of the function
f (x, y, z)=xyz subject to the constraint

x2

9

Z2

2
+y—4-+——=1,x,y,220.
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