No. of Printed Pages : 5

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2011 00859

MMT-004 : REAL ANALYSIS

Time : 2 hours

Maximum Marks : 50

MMT-004

Note : Question no. 1 is compulsory. Do any four questions out of questions no. 2 to 7.

 State, whether the following statements are TRUE or FALSE. Give reasons for your answer.

5x2=10

- (a) If (x_1, d_1) and (x_2, d_2) are two discrete metric spaces, then the product metric on $X_1 \times X_2$ is discrete.
- (b) The set [0, 1) U [1, 2] is a connected subset of R with respect to the standard metric.
- (c) The function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = (x^2 y^2, 2xy)$ is not invertable.
- (d) The union of an open subset of **R** and a closed subset of **R** can not be measurable.

MMT-004

1

P.T.O.

(e) The function $f : \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$f(x) = \begin{cases} 1, \text{ when } x \in \left[n, n + \frac{1}{2}\right) \\ n \in z \\ 0, \text{ when } x \in \left[n + \frac{1}{2}, n + 1\right) \end{cases}$$

is continuous almost everywhere on R.

2. (a) Let d and D be metrices defined on $\mathbf{R} \times \mathbf{R}$ as d $((x_1, x_2), (y_1, y_2)) = |x_1 - y_1| + |x_2 - y_2|$ D $((x_1, x_2), (y_1, y_2)) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$ Show that d and D equivalent metrices on \mathbf{R}^2 .

4

Use this theorem to find $\lim_{n\to\infty} \int_0^1 f \mathbf{n}(x) dx$

where
$$fn(x) = \frac{x}{1 + n^2 x^2}$$
.

(c) Find the convolution f * g of the following 3 functions f and g :

$$f(t) = \frac{t^{\frac{1}{3}}}{1-2(1-t)^{\frac{1}{3}}}, \ 0 < t < 1$$

$$g(t) = 1-2t^{1/3}, 0 < t < 1$$

MMT-004

(a) Let (x, d_1) and (y, d_2) be metric spaces. Let $x_0 \in x$. If $f(x, d_1) \rightarrow (y, d_2)$ is continuous at x_0 then show that for every sequence $\{x_n\}$ in x converging to x_0 , the sequence $\{f(x_n)\}$ converges to $f(x_0)$ in y. Is the converse true ? Justify your answer.

(b) Find the Fourier series for the function

$$f(t) = \begin{cases} -5, \text{ if } -\pi < t < 0 \\ 5, \text{ if } 0 < t < \pi \end{cases}$$

- (c) Let $P_1 : \mathbb{R}^3 \to \mathbb{R}$ be the projection function defined by $P_1 (x, y) = x \forall (x, y) \in \mathbb{R}^2$. Show that P_1 is continuous.
- 4. (a) State inverse function theorem. Use this theorem to check whether the function $f: \mathbb{R}^4 \rightarrow \mathbb{R}^3$ defined by f(x, y, z) = (x + y + z, 2)e^y cos x, 2 e^y sin x) is locally invertable at (1, 1, 1).
 - (b) Let $\{ E_n \}$ be a sequence of pairwise disjoint measurable sets. Show that

$$\mathbf{m}\left(\bigcup_{1=1}^{\infty}\mathbf{E}_{i}\right)=\sum_{1=1}^{\infty}\mathbf{m}\left(\mathbf{E}_{i}\right)$$

MMT-004

3.

3

5

2

5

3

5

- (a) Define the following in the context of signals 4 and systems and give one example for each. Justify your choice of example.
 - (i) Time invariant.
 - (ii) Casual system.
 - (b) Let the function $f : \mathbb{R}^4 \to \mathbb{R}^3$ be defined by 3 $f(x, y, z, w) = (x^2 y, y^2 z, z^2 x)$. Find f '(a) at a = (1, 2, -1, -2)
 - (c) Let (x, d) be a metric space. Let F be a closed 3 subset and k be a compact subset of x. Show that F∩K is compact in x.
- 6. (a) Let (x, d) be a metric space and A be a 4 non-empty subset of x. Show that

 $\overline{\mathbf{A}} = \left\{ x : \mathbf{d} \left(x, \mathbf{A} \right) = 0 \right\}.$

- (b) For the following sets, find m*A and check 3 whether they are measurable.
 - (i) $A = \{0, 1\} \cup \{x : x \text{ is a solution of } sin x = 0\}$

(ii) $B = \{x : x \text{ is rational in } [2, 3] \}$

(c) Let the frequency response H (i W) be given

by H (i W) =
$$\begin{cases} 1 & -W < w < W \\ 0 & \text{otherwise} \end{cases}$$

Find the system response to the signal

h (t) =
$$e^{i\frac{\omega}{7}t} + 4e^{i\frac{\omega}{5}t} + 7e^{i2\omega t}$$

MMT-004

P.T.O.

3

- 7. (a) Show that the continuous image of a compact connected metric space is both compact and connected.
 - (b) Find the extreme values of the function 4 f(x, y, z) = xyz subject to the constraint

$$\frac{x^2}{9} + \frac{y^2}{4} + \frac{z^2}{25} = 1, \, x \,, \, y \,, \, z \ge 0 \,.$$

MMT-004

6