M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination
December, 2011
00859

MMT-004 : REAL ANALYSIS

Time : 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Do any four questions out of questions no. 2 to 7.

1. State, whether the following statements are TRUE or FALSE. Give reasons for your answer. $5 \times 2=10$
(a) If $\left(\mathrm{x}_{1}, \mathrm{~d}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{~d}_{2}\right)$ are two discrete metric spaces, then the product metric on $\mathrm{X}_{1} \times \mathrm{X}_{2}$ is discrete.
(b) The set $[0,1) \mathrm{U}[1,2]$ is a connected subset of R with respect to the standard metric.
(c) The function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ is not invertable.
(d) The union of an open subset of \mathbf{R} and a closed subset of \mathbf{R} can not be measurable.
(e) The function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$
f(x)=\left\{\begin{aligned}
& 1, \text { when } x \in\left[n, n+\frac{1}{2}\right) \\
& n \in z \\
& 0, \text { when } x \in\left[n+\frac{1}{2}, \mathrm{n}+1\right)
\end{aligned}\right.
$$

is continuous almost everywhere on \mathbf{R}.
2. (a) Let d and D be metrices defined on $\mathbf{R} \times \mathbf{R}$ as
$\mathrm{d}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$
$\mathrm{D}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$
Show that d and D equivalent metrices on R^{2}.
(b) State Dominated convergence Theorem.

Use this theorem to find $\lim _{n \rightarrow \infty} \int_{0}^{1} f \mathrm{n}(x) \mathrm{d} x$
where $f \mathrm{n}(x)=\frac{x}{1+\mathrm{n}^{2} x^{2}}$.
(c) Find the convolution $f^{*} g$ of the following 3 functions f and g :

$$
\begin{aligned}
& f(t)=\frac{t^{1 / 3}}{1-2(1-t)^{1 / 3}}, 0<t<1 \\
& g(t)=1-2 t^{1 / 3}, \quad 0<t<1
\end{aligned}
$$

3. (a) Let $\left(x, \mathrm{~d}_{1}\right)$ and $\left(y, \mathrm{~d}_{2}\right)$ be metric spaces. Let $x_{0} \in x$. If $f\left(x, \mathrm{~d}_{1}\right) \rightarrow\left(y, \mathrm{~d}_{2}\right)$ is continuous at x_{0} then show that for every sequence $\left\{x_{n}\right\}$ in x converging to x_{0}, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f\left(x_{0}\right)$ in y. Is the converse true? Justify your answer.
(b) Find the Fourier series for the function

$$
f(t)=\left\{\begin{array}{c}
-5, \text { if }-\pi<t<0 \\
5, \text { if } 0<t<\pi
\end{array}\right.
$$

(c) Let $\mathrm{P}_{1}: \mathrm{R}^{3} \rightarrow \mathrm{R}$ be the projection function defined by $\mathrm{P}_{1}(x, y)=x \forall(x, y) \in \mathrm{R}^{2}$. Show that P_{1} is continuous.
4. (a) State inverse function theorem. Use this theorem to check whether the function $f: \mathrm{R}^{4} \rightarrow \mathrm{R}^{3}$ defined by $f(x, y, z)=(x+y+z, 2$ $\left.\mathrm{e}^{y} \cos x, 2 \mathrm{e}^{y} \sin x\right)$ is locally invertable at (1, 1, 1).
(b) Let $\left\{E_{n}\right\}$ be a sequence of pairwise disjoint 5 measurable sets. Show that
$m\left(\bigcup_{1=1}^{\infty} E_{i}\right)=\sum_{1=1}^{\infty} m\left(E_{i}\right)$
5. (a) Define the following in the context of signals and systems and give one example for each. Justify your choice of example.
(i) Time invariant.
(ii) Casual system.
(b) Let the function $f: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ be defined by $f(x, y, z, w)=\left(x^{2} y, y^{2} z, z^{2} x\right)$. Find $f^{\prime}(a)$ at $a=(1,2,-1,-2)$
(c) Let $(x, \mathrm{~d})$ be a metric space. Let F be a closed subset and k be a compact subset of x. Show that $\mathrm{F} \cap \mathrm{K}$ is compact in x.
6. (a) Let $(x, \mathrm{~d})$ be a metric space and A be a non-empty subset of x. Show that

$$
\overline{\mathrm{A}}=\{x: \mathrm{d}(x, \mathrm{~A})=0\} .
$$

(b) For the following sets, find $\mathrm{m}^{*} \mathrm{~A}$ and check whether they are measurable.
(i) $\mathrm{A}=\{0,1\} \cup\{x: x$ is a solution of $\sin x=0\}$
(ii) $\mathrm{B}=\{x: x$ is rational in $[2,3]\}$
(c) Let the frequency response H (i W) be given
by $H(i W)= \begin{cases}1 & -W<w<W \\ & 0 \text { otherwise }\end{cases}$
Find the system response to the signal
$h(t)=e^{i \frac{\omega}{7} t}+4 e^{i \frac{\omega}{5} t}+7 e^{i 2 \omega t}$
7. (a) Show that the continuous image of a 6 compact connected metric space is both compact and connected.
(b) Find the extreme values of the function 4 $f(x, y, z)=x y z$ subject to the constraint $\frac{x^{2}}{9}+\frac{y^{2}}{4}+\frac{z^{2}}{25}=1, x, y, z \geqslant 0$.

