MMT-003

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination

December, 2011

MMT-003 : (ALGEBRA)

Time : 2 hours

00415

Maximum Marks : 50

10

- Note: Question No. 1 is compulsary. Also do any four questions from q. no. 2 to q. no. 6. Calculators are not allowed.
- 1. Which of the following statements are **true** and which are **false**. Give reasons for your answer.
 - (a) There is a simple group of order 20.
 - (b) It K/F is a field extension of degree 3, then $K = F(\alpha)$ for any $\alpha \in K$ -F.
 - (c) If χ is a character of a finite group G and $\overline{\chi}$ is defined by $\overline{\chi}(g) = \overline{\chi(g)}$, then $\overline{\chi}$ is also a character.
 - (d) The field of order 64 has a sub field of order 32.
 - (e) If ρ is a representation of a group G over **R**, then there is one and only one geG for which ρ (g)=I.

MMT-003

- 2. (a) Let K C H C G be groups where G is a finite 4 group. Prove the formula.
 [G:K] = [G:H] [H:K]
 - (b) Solve the set of congruences $x \equiv 1 \pmod{4}$ $x \equiv 0 \pmod{3}$ $x \equiv 5 \pmod{7}$.
 - (c) Let G be a group of order n which operates 3 non-trivially on a set of order r. If n + r!, then show that G has a proper normal subgroup ≠ {e}.

3

3

3. (a) Reduce the matrix given below to diagonal 3 form by integer row and column operations :

3	1	-4]
2	-3	1
4	6	-2]

(b) Evaluate the Legendre symbol.

 $\left(\frac{13}{227}\right)$

(c) Let V = {e,a,b,c} be the klein four group with 4 the group operation given below :

•	e	a	b	с
е	е	а	b	с
а	а	е	с	b
b	b	с	e	a
c	с	b	а	е

MMT-003

2

Let $\rho: V \rightarrow GL_2$ (C) be defined as

$$\rho (\mathbf{e}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \rho (\mathbf{a}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\rho (b) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \rho (c) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (i) Check that ρ is a representation of V.
- (ii) Find the character of ρ .
- (iii) Is ρ irreducible ? Justify.
- 4. (a) Let $g \in An$ be an even permutation. Let C_1 and C_2 , respectively denote the conjugancy classes of g in Sn and An. Further, let H_1 denote the centralizer of g in Sn. Show that if $|C_1| = |C_2|$, then H_1 contains odd permutations and if $|C_1| = 2|C_2|$ then H_1 does not contain any odd permutation.
 - (b) Check if the ISBN number 2 .978-81-224-3129-2 is a valid ISBN number.
 - (c) Determine the irreducible polynomial for 2+2 $\alpha = \sqrt{3} = \sqrt{5}$ over each of the following fields (i) **Q** (ii) **Q**($\sqrt{5}$).
- 5.
- (a) Let F be a field and H be a finite subgroup 6
 of the multiplicative group F^{*} of non-zero
 elements of F, Prove that H is a cyclic group.

MMT-003

P.T.O.

4

3

(b) The matrix $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ has order 3 and 4

therefore, it defines a matrix representation $\{I, A, A^2\}$ of the cyclic group G of order 3. Find a G-invariant form an C^2 .

- 6. (a) Let α be a complex root of the irreducible **3** polynomial $x^3 - 3x + 4$. Find the inverse of $\alpha^2 - \alpha + 1$ in **Q** (α) explicitly in the form $a + b \alpha + c \alpha^2$, $a, b, c \in \mathbf{Q}$.
 - (b) Decide whether or not *i* is in the field **2** $Q(\sqrt{-2})$.
 - (c) Prove that the only one dimensional **5** complex representations of S_5 are trivial representation defined by ρ (g) = 1 \forall g \in S₅ and the sign representation.