M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS)

Term-End Examination
December, 2011
MMT-003 : (ALGEBRA)
Time : 2 hours
Maximum Marks : 50
Note: Question No. 1 is compulsary. Also do any four questions from q. no. 2 to q. no. 6. Calculators are not allowed.

1. Which of the following statements are true and which are false. Give reasons for your answer.
(a) There is a simple group of order 20.
(b) It K / F is a field extension of degree 3, then $K=F(\alpha)$ for any $\alpha \in K-F$.
(c) If χ is a character of a finite group G and $\bar{\chi}$ is defined by $\bar{\chi}(\mathrm{g})=\overline{\chi(\mathrm{g})}$, then $\bar{\chi}$ is also a character.
(d) The field of order 64 has a sub field of order 32.
(e) If ρ is a representation of a group G over R, then there is one and only one $g \in G$ for which $\rho(\mathrm{g})=\mathrm{I}$.
2. (a) Let K C H C G be groups where G is a finite 4 group. Prove the formula.
$[\mathrm{G}: \mathrm{K}]=[\mathrm{G}: \mathrm{H}][\mathrm{H}: \mathrm{K}]$
(b) Solve the set of congruences 3
$x \equiv 1(\bmod 4)$
$x \equiv 0(\bmod 3)$
$x \cong 5(\bmod 7)$.
(c) Let G be a group of order n which operates 3 non-trivially on a set of order r. If $n+r$!, then show that G has a proper normal subgroup $\neq\{\mathrm{e}\}$.
3. (a) Reduce the matrix given below to diagonal 3 form by integer row and column operations :
$\left[\begin{array}{rrr}3 & 1 & -4 \\ 2 & -3 & 1 \\ -4 & 6 & -2\end{array}\right]$
(b) Evaluate the Legendre symbol.
$\left(\frac{13}{227}\right)$
(c) Let $\mathrm{V}=\{\mathrm{e}, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ be the klein four group with 4 the group operation given below :

e	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

Let $\rho: V \rightarrow \mathrm{GL}_{2}(\mathrm{C})$ be defined as
$\rho(\mathrm{e})=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \rho(\mathrm{a})=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
$\rho(b)=\left(\begin{array}{rr}-1 & 0 \\ 0 & -1\end{array}\right) \rho(c)=\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$.
(i) Check that ρ is a representation of V.
(ii) Find the character of ρ.
(iii) Is ρ irreducible ? Justify.
4. (a) Let geAn be an even permutation. Let $C_{1} \quad 4$ and C_{2}, respectively denote the conjugancy classes of g in Sn and An. Further, let H_{1} denote the centralizer of g in Sn . Show that if $\left|C_{1}\right|=\left|C_{2}\right|$, then H_{1} contains odd permutations and if $\left|\mathrm{C}_{1}\right|=2\left|\mathrm{C}_{2}\right|$ then H_{1} does not contain any odd permutation.
(b) Check if the ISBN number 2 $978-81-224-3129-2$ is a valid ISBN number.
(c) Determine the irreducible polynomial for
$\alpha=\sqrt{3}=\sqrt{5}$ over each of the following fields (i), $\mathbf{Q} \quad$ (ii) $\quad \mathbf{Q}(\sqrt{5})$.
5. (a) Let F be a field and H be a finite subgroup of the multiplicative group F^{*} of non-zero elements of F , Prove that H is a cyclic group.
(b) The matrix $\mathrm{A}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ has order 3 and $\quad \mathbf{4}$
therefore, it defines a matrix representation $\left\{\mathrm{I}, \mathrm{A}, \mathrm{A}^{2}\right\}$ of the cyclic group G of order 3. Find a G-invariant form an \mathbf{C}^{2}.
6. (a) Let α be a complex root of the irreducible3 polynomial $x^{3}-3 x+4$. Find the inverse of $\alpha^{2}-\alpha+1$ in $\mathbf{Q}(\alpha)$ explicitly in the form $a+b \alpha+c \alpha^{2}, a, b, c \in \mathbf{Q}$.
(b) Decide whether or not i is in the field 2 $Q(\sqrt{-2})$.
(c) Prove that the only one dimensional complex representations of S_{5} are trivial representation defined by $\rho(\mathrm{g})=1 \forall \mathrm{~g} \in \mathrm{~S}_{5}$ and the sign representation.

