Diploma in Civil Engineering (DCLEVI)

Term-End Examination

December, 2011

00742

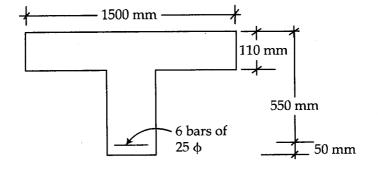
BCE-041: THEORY OF STRUCTURES II

Time: 2 hours Maximum Marks: 70

Note: Question number 1 is compulsory. Attempt any other four questions. In all, solve five questions. All questions carry equal marks. Assume suitable data wherever necessary and mention it clearly. Use of scientific calculator is allowed.

- 1. Choose the most appropriate answer from the given alternatives. 7x2=14
 - (a) In Limit-State method of design the characteristic compressive strength of concrete is fck. What is the design strength of concrete f_d at collapse?
 - (i) 0.36 fck
- (ii) 0.87 fck
- (iii) 0.67 fck
- (iv) 0.45 fck
- (b) In Limit-State method of design for the flexural members, the maximum depth of neutral axis $X_{u(max)}$ for steel of grade Fe 250 is:
 - (i) 0.48 d
- (ii) 0.43 d
- (iii) 0.53 d
- (iv) 0.45 d

(-)	т т	:::: C1-1		محنمه	fam blaa
(c)		imit-State m		•	
		ıral members			
		oan to depth			
		rol deflecti		ase of s	simply
	supp	orted beams	is :		
	(i)	7 (ii) 2	26 (iii)	20 (i	v) 10
(d)	The	maximum co	mpressio	n reinfor	cement
	in a l	beam is provid	ded as a p	ercentag	e of the
	gros	s sectional a	area of t	he bean	n. This
	perce	entage is :			
	(i)	2.0	(ii)	4.0	
	(iii)	6.0	(iv)	1.0	
(e)	The	maximum	compres	sive str	ain in
	concrete in axial compression is taken as:			en as :	
	(i)	0.35%		0.30%	
	(iii)	0.25%	(iv)	0.2%	
(f)	The	minimum re	inforcem	ent in a	slab is
.,	provided as a percentage of the gros			gross	
	secti	sectional area of the slab. This percentage			centage
	for s	for steel of grade Fe 415 is :			
	(i)	0.15	(ii)	0.20	
	(iii)	0.12	(iv)	0.34	
(g)	The	maximum	spacir	ng of	shear
νο,	reinf	orcement in th	_	~	
	in a beam is taken to be equal to:			-	
	(i)	effective dep	-		•
	(ii)	-			
	` '	300 mm			•
	` ′	least of (i), (i	i) and (iii	١.	
	(^*/		-, (111	<i>)</i> •	


- 2. A rectangular beam of clear span 6 m is simply supported on 300 mm wide supports. This beam has to carry a uniformly distributed load of 15 kN/m including its self weight. Design the beam using M₂₀ grade of concrete and Fe 415 grade of steel for both tension and shear reinforcement.
- 3. (a) Mention the basic assumptions made in the theory for the design of reinforced concrete flexural members by Limit-State method.
 - (b) Draw the strain and stress diagrams for singly reinforced rectangular sections to be designed by Limit-State method. Determine the maximum depth of neutral axis for a balanced section using the grade of steel as Fe 415.

7

7

14

4. Determine the permissible U.D.L inclusive of its self weight for a T-beam section shown below. This beam has an effective span of 7.5 m and is simply supported on both ends. Adopt M₂₅ grade of concrete and Fe 415 grade of steel.

- reinforcement for a rectangular reinforced concrete column of size 300 mm × 600 mm. The column has an unsupported length of 3.0 m. Both ends of the column are effectively hold in position but not restrained against rotation. This column carries a factored axial load of 2000 kN. Adopt M₂₀ grade of concrete and Fe 415 grade of steel.
- 6. Design strip footing for a concrete wall of 300 mm thickness carrying a load of 700 kN/m. Adopt safe bearing capacity of soil as 180 kN/m², M₂0 grade of concrete and steel of grade Fe 415.
- (a) Discuss how would you check safety of
 a retaining wall against overturning and
 sliding.
 - (b) Show the detailing of reinforcement by means of neat sketches in plan and sections for a simply supported one way slab.
- 8. Write short notes on any four of the following:

 $4x3^{1/2}=14$

- (a) Development length for reinforcement.
- (b) Effective flange width of T-beams
- (c) Limit state of collapse
- (d) Under reinforced, balanced or over reinforced sections
- (e) Shear reinforcement in beams.
- (f) Fire resistance of concrete.

Note: The following design data may be used wherever required:

(a) Design Shear strength τ_c of concrete in N/mm² (Limit-State method):

100 A' _{st} / bd	Concrete M20	Concrete M25
0.15	0.28	0.29
0.25	0.36	0.36
0.50	0.48	0.49
0.75	0.56	0.57
1.00	0.62	0.64
0.25	0.67	0.70
1.50	0.72	0.74
1.75	0.75	0.78
2.00	0.79	0.82
2.25	0.81	0.85
2.50	0.82	0.88
2.75	0.82	0.90

(b) Design Bond stress $\tau_{\rm bd}$ N/mm² (Limit-state method) for bars in tension.

	Steel Fe 250	Steel Fe 415
Concrete M20	1.20	1.92
Concrete M25	1.40	2.24

(c) Design shear strength of concrete τ_c max. N/mm² (Limit-State method).

Concrete M20 2.8

Concrete M25 3.1

(d) For solid slabs, design shear strength of concrete shall be taken as K $\tau_{\rm c}$. The values of K are as below :

Overall depth of slab (mm)	K
300 or more	1.00
275	1.105
250	1.10
225	1.15
200	1.20
175	1.25
150 or less	1.30

(e) Modification factor K_2 for different percentages of tension reinforcement A_{st} in flexural RCC members for stress in steel at service loads, $f_s = 240 \text{ N/mm}^2$, may be taken as below:

100 A _{st} / bd	K ₂
0.2	1.7
0.4	1.32
0.6	1.15
0.8	1.05
1.0	1.0
1.2	0.95
1.4	0.90
1.6	0.88
1.8	0.86
2.0	0.84
2.2	0.82
2.4	0.80
2.6	0.79
2.8	0.78