Diploma in Civil Engineering

Term-End Examination

December, 2011

BCEE-061: PRESTRESSED CONCRETE

Time: 2 hours Maximum Marks: 70

Note: Attempt FIVE questions including question **No.1**, which is **compulsory**. Use of scientific calculator is **allowed**. Assume any missing data suitably.

- 1. Choose the most appropriate answer from the options given in each case. 2x7=14
 - (a) For post-tensioned concrete members, minimum grade of concrete, specified by the code, is:
 - (i) M 20
- (ii) M 30
- (iii) M 40
- (iv) M 50
- (b) Time dependent loss of stress in tendons may take place due to :
 - (i) creep
 - (ii) elastic shortening
 - (iii) friction
 - (iv) creep and friction

- (c) Use of anchorages is needed in:
 - (i) Pretensioned concrete
 - (ii) Post tensioned concrete
 - (iii) Both of the above
 - (iv) None of the above
- (d) A parabolic profile of a tendon is needed for load balancing of a :
 - (i) concentrated load
 - (ii) UDL
 - (iii) force system consisting of two point loads
 - (iv) none of the above
- (e) Hoyer's long line system of prestressing is used for:
 - (i) pre tensioned concrete
 - (ii) post tensioned concrete
 - (iii) both the above
 - (iv) pre tensioned concrete as well as for short-length post tensioned concrete members.
- (f) Split cone assembly is used in:
 - (i) Gifford Udall system
 - (ii) Lee McCall system
 - (iii) Magnel Blaton system
 - (iv) None of the above

	(g)	Loss of stress in steel, with time when it is subjected to a constant strain, is called.				
		(i)	Creep	(ii)	Shrinkage	
		(iii)	Relaxation	(iv)	Yield	
2.	(a)	Write any three advantages of use of pre stressed concrete.				
	(b)	Discuss two cases when pre tensioning should be preferred to post tensioning.				7
3.	(a)	A beam is prestressed by a tendon cable having an initial prestress of 500 N/mm ² . Calculate percentage loss of prestress due to shrinkage of concrete if the beam is: (i) pretensioned, and				
		(ii)	Post-tensioned transfer is 7 da	_	of concrete at	
	(b)	Describe any one system of anchoring tendons in post - tensioned construction.				7
4.	(a)	Draw a neat sketch of a Weinberg anchor clip and explain its use.				7
	(b)	What do you understand by 'Hydrogen embrittlement' of tendons?				7

- **5.** (a) Explain the concept of pressure line briefly.
 - (b) Discuss why the use of a good strength concrete and steel is desired in prestressed concrete?

7

7

14

6. In a prestressed concrete beam, of cross section 300×400 mm (depth) and 6 m span, an initial prestressing force of 400 kN is applied at an eccentricity of 50 mm. Area of tendons is 400mm². Find the total percentage loss of prestress in tendons.

Use the following data:

 $E_s = 2 \times 10^5 \text{ N/mm}^2$

 $E_c = 0.33 \times 10^5 \text{ N/mm}^2$

Slip in anchorage = 1.5 mm

Creep coefficient in concrete =1

Shrinkage strain of concrete = 0.0002

Loss due to relaxation =3%

- 7. Write short notes on any two out of the following: 2x7=14
 - (a) Failures in prestressed beams
 - (b) Prestressed poles
 - (c) Limit states for design of prestressed concrete beams.