B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination December, 2011

BIME-002: THERMAL ENGG - I

Time	e : 3 ho	nurs Maximum Marks : 7	0
Note	cl	ttempt any five. Use of steam tables and Mollier' nart is allowed. Use of scientific non-programmabl lculator is permitted .	
1.	(a)	Using Maxwell relation derive the Clausius clapeyron equation.	7
	(b)	Show that for a perfect gas Joule-Thomson coefficient is equal to zero.	7
2.	(a)	Define and differentiate between internal energy of reaction and enthalpy of reaction.	7
•	(b)	The dry products of combustion of hydrocarbon fuel have the following or sat analysis 8% CO ₂ , 1% CO, 8.8% O ₂ and 82.2% N ₂ . Determine the actual as well as theoretical air-fuel ratio.	7
		The formula for hydrocarbon is of the form C_xH_y . Take molecular weight of air as 28.95.	

- 3. (a) Explain the working of Babcock- Wilcox boiler with neat sketch.
 - (b) The absolute pressure in the condenser is 11.56 kPa when the barometer reads 1.0×10² kPa. The temperature is 40°C. Determine the partial pressure of air, vacuum efficiency and mass of air present in the condenser per kg of steam.

7

7

7

7

7

- 4. (a) What are the basic components of a steam power plant? Enumerate the function of each component.
 - (b) Steam at a pressure of 10 bar, dry-saturated enters the nozzle and the exit pressure is maintained at 0.3 bar. The nozzle efficiency for the convergent portion is 96% and for the divergent portion is 92%. The throat diameter for each nozzle is 6mm. Find the mass flow rate of steam and the exit diameter of the nozzle required.
- 5. (a) Explain Regenerative Rankine Cycle.
 - (b) A simple impulse turbine has a blade speed of 350 m/s and blade speed to steam velocity (inlet) ratio is 0.45. Nozzles are inclined at 20° to plane of rotation and steam leaves the stage at an angle of 70° to the plane of rotation.

Determine,

- (i) Blade inlet angle (θ)
- (ii) Kinetic energy of steam at outlet.

- **6.** (a) Compare gas turbines with I.C engines.
 - (b) In a gas turbine cycle, air at 270°C and 0.98 bar is compressed to 6 bar. The temperature of air is increased to 750°C as it passes through the combustion chamber. The isentropic efficiencies of compressor and turbine are 0.8 and 0.85 respectively. Determine the efficiency of the plant.

7. Write short notes on:

 $4x3^{1/2}=14$

- (a) Turbojet Engine
- (b) Turboprop Engine
- (c) Combined power and heating cycle
- (d) Carnot vapour cycle.