01242

B.Tech. ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination December, 2011

BIEL-003: DIGITAL ELECTRONICS

Maximum Marks: 70 Time: 3 hours Attempt any seven questions. All questions carry equal Note: marks. 2 (a) Simplify the Expression 1. [ABC(C + BD) + AB]CRealize XOR gate using four 2 - input 3 (b) NAND gates. 5 Design a 4 bit Gray codes to Binary codes (c) convertor. Design Full Adder using two Half Adders. 5 2. (a) Use Block Diagram of Half Adder. (i) Circuit of Half Adder. (ii) Simplify the logic function using Quine -5 (b) Mcluskey method. $f(A, B, C, D) = \pi M(2, 7, 8, 9, 10, 12).$

3.	What happens if output accidently gets shorted to ground in :		
	(a)	NMUS? (b) PMOS?	
4.		ign a 3-bit up/down counter with a control C. Use JK flip flops.	10
5.	(a)	Design a 4 - digit 7 - segment LED display system with leading zero blanking.	6
	(b)	Given the logical equation $f = ABC + \overline{A}BC + \overline{B}CD$. Simplify using K-Map.	4
6.	(a)	What is the difference between Encoders and Decoders ?	5
	(b)	Why Excess-3 known as self-complementing codes? Find the excess-3 code of the following: (i) 0100 (ii) 1001	+3=5
7.	(a) (b)	Design and explain 4-bit comparator. What is the difference between ROM, PROM and EPROM?	5 5
8.	(a)	Design 32 : 1 Multiplexer using two 16 : 1 Multiplexers and one 2 : 1 Multiplexer.	5
	(b)	Explain Master-slave JK flip flop.	5

9. Design a digital system with two flip flops E and F and one 4-bit binary counter, A. The individual flip flops in A are denoted by A₄, A₃, A₂, A₁, with A₄ holding the MSB of the count. A starting signal S initiates the system operation by clearing the counter A and flip flop F. The counter is then incremented by 1 starting from next clock pulse and continues to increment until operation stops. Counter bits A₃ and A₄ determine sequence of operations:

If $A_3 = 0$, $E \leftarrow 0$ and count continues.

If $A_3 = 1$, $E \leftarrow 1$ then if $A_4 = 0$ count continues but if $A_4 = 1$, $F \leftarrow 1$ on next clock pulse and system stops counting.

Draw the ASM chart of the system also.

- 10. Write short notes on any two of the following: 5x2=10
 - (a) Pseudo Random Generator
 - (b) BCD Adder
 - (c) ALU