No. of Printed Pages: 3

ET-533(B)

0062

B.Tech. Civil (Water Resources Engineering)

Term-End Examination December, 2011

ET-533(B): OPEN CHANNEL FLOW

Time: 3 hours Maximum Marks: 70

Note: Answer any five questions. All questions carry equal marks. Neat, and well-labelled sketches are to be given where necessary. Use of scientific calculator is permitted.

- (a) Sketch the hydrostatic pressure distribution in an open channel whose bed is (i) concave upwards; (ii) convex upwards.
 Give reasons.
 - (b) Give typical velocity distribution profile in an open channel (prismatic) along a vertical; and along a horizontal. Give reasons.
 - (c) What is the distinctive difference between an open channel and a pipe flow?
- 2. (a) A rectangular channel (b=1.55m) is to carry a given flow at critical condition, at a depth of flow =0.78m. Find the critical velocity of flow. Also, find the critical slope if n=0.014. What is the value of discharge?
 - (b) Solve: above if the Froude No of flow = 0.72.
 - (c) Draw typical isovels for a rectangular and a trapezoidal channel.

6

2

3.	(a)	Explain the steps for development of : (i) Specific energy curve, and	6
		(ii) Specific force curve.	
	(b)	Explain how we use the concept of specific force in the hydraulic jump predictions.	6
	(c)	How do we designate a given prismatic channel as steep, mild, or critical.	2
4.	vari in n	ing sketches explain the various gradually, ed flow water surface profiles that can occur ature. State the practical conditions under ch each curve comes into existence.	14
5.	ene	ch out, and explain the layout of one USBR rgy dissipator set up down stream of a way. Give the function of each element.	14
6.	(a)	While a flood was being passed off by a spillway, at a discharge intensity of $8.25 \text{ m}^2/\text{s}$, it was observed that the depth of flow on the horizontal floor was = 0.65 m . Calculate the required tailwater depth to cause the formation of a hydraulic jump.	7
	(b)	Calculate the loss of energy through this jump.	5
	(c)	Name the type of jump that is formed here?	2
7.	grad form	uss in detail <i>any two</i> methods of computing ually varied water surface profiles. Give the at of the tables used to enter the results of lations.	14

- 8. Write short notes on any four of the following: 4x3.5=14
 - (a) Surge wave and its types, giving sketches.
 - (b) Estimation of the length of hydraulic jump
 - (c) Reynolds Number
 - (d) Factors influencing Manning's coefficient. 'n'
 - (e) Estimation of wave height in the design of a gravity dam.