Time: 3 hours

B.Tech. Civil (Water Resources Engineering)

Term-End Examination December, 2011

01122

Maximum Marks: 70

ET-507(B): WASTE WATER TREATMENT

Note :	Answer six questions in all. Question number 1 is				
	compulsory. Use of scientific calculator is permitted. The				
	ancipers must be in moner offen language				

- 1. Select the correct answer from the four options in each of the following: 10x1=10
 - (a) The sewer which transport the sewage to the point of treatment is called:
 - (i) house sewer
- (ii) main sewer
- (iii) out fall sewer
- (iv) none of these
- (b) The coefficient of runoff for completely impervious areas tend to:
 - (i) zero

(ii) 0.5

(iii) 1.0

- (iv) infinity
- (c) 'Crowe' is provided at:
 - (i) lower end of ventilating column
 - (ii) upper end of ventilating column
 - (iii) upper end of manhole
 - (iv) first step in manhole

(d)	The gas which is generally present in sewers,					
	is:					
	(i)	H ₂ S	(ii)	CO ₂		
	(iii)	CH_4	(iv)	All of these		
(e)	Minimum 0.0 prescribed for a river stream,					
	to avoid fish death is :					
	(i)	2 ppm	(ii)	4 ppm		
	(iii)	8 ppm	(iv)	10 ppm		
(f)	For	a grit chamber, if	the ve	locity of flow is		
0.25 m/sec and detention peri						
2 minutes, the length of tank, will be:						
	(i)	16 m	(ii)	20 m		
	(iii)	24 m	(iv)	30 m		
(g)	Low	er F/M value	in a	conventional		
	activ	ited treatment plant will mean :				
(i) Lower BOD Removal						
	(iii)	(iii) NO effect on BOD Removal				
	(iv)	y) None of the above				
h)	If a	factory produ	ces ar	n average of		
	300 m ³ /d of waste water. Assuming that					
	sewage flow is 100 lit/d, the Hydraulic equivalent population is:					
	(i)	1000	(ii)	3000		
	(iii)	100	(iv)	300		

(i) In a sludge digestion tank, the moisture content of sludge of volume V₁ litre is reduced from P₁% to P₂%. The resulting volume will be:

(i)
$$\frac{(100 + P_1)}{(100 + P_2)} \times V_1$$

(ii)
$$\frac{(100 - P_1)}{(100 + P_1)} \times V_1$$

(iii)
$$\frac{(100 - P_1)}{(100 - P_2)} \times V_1$$

(iv)
$$\frac{(100 + P_2)}{(100 - P_1)} \times V_1$$

- (j) A conventional activated sludge plant involves a misery regime, which is essentially of:
 - (i) Plug flow tape
 - (ii) Completely mixed tape
 - (iii) Both (i) and (ii)
 - (iv) None of these

What is a Trap? With the help of neat sketch 5 2. (a) describe the working of Increpting Trap? A certain low - lying area has a population 7 (b) of 4000 persons, who are being supplied water at the rate of 135 lit per day. Design an air - ejector as a composite unit for the area. Assume following: Velocity of compressed air = 6 m/sec (i) Velocity in the main sewer = (ii) 0.9 m/sec Time required to fill ejector = (iii) 10 minutes height of ejector = 2.0 m(iv) (v) entire water that is supplied appears as sewage. Discuss the principle of Gas Transfer? 6 3. (a) Design a grit chamber to remove the 6 (b) particles of 0.2 mm diameter and specific , gravity 2.6. Settling velocity of the particles are in the range of 0.014 to .022 m/sec. The proportioning weir will be having a velocity of 0.27 m/sec. The maximum waste water flow is expected to be 13000 m³/day. 5 Differentiate between aerobic and anaerobic 4. (a) forms of biological reactions. 7 The 5 day BOD at 30°C of a sewage sample (b) is 110 mg/lit. Calculate its 5 day BOD at 20°C . Assume Deoxygenation constant at 20°C (K₂₀) as 0.1.

- 5. (a) Define Sludge Volume Index? What is it's 4 importance in sewage treatment.
 - (b) With the help of line diagram, describe the treatment of sewage using single stage bio-filter. What are the common operational problems associated with the conventional media biological filters?
- 6. (a) List the seven criteria, which are generally considered in selecting a sludge treatment/disposal option and elaborate any one of them in detail.
 - (b) Design an oxidation pond for treating 6 sewage from a hot climatic residential colony with 5000 persons, contributing sewage @ 120 lit/capita/day. The 5 day BOD of sewage is 300 mg/lit.
- 7. Discuss system approach to the problem of re-use 12 of waste water in detail.
- (a) Spreading basins are better than direct 6 injection well system. Discuss.
 - (b) With the help of neat sketch describe the working of Rotating Biological Contractors (RBC).

- 9. Write short notes on *any four* of the following:
 - (a) Conservative pollutants

4x3=12

- (b) Limiting velocity
- (c) Anaerobic pond
- (d) Incineration
- (e) Sludge Bulking
- (f) Cleaning of Deep Bed filters