No. of Printed Pages: 5

ET-105(B)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination

December, 2011

01172

ET-105(B): CHEMISTRY

Time: 3 hours Maximum Marks: 70

Note: Question no. 1 is compulsory. Answer any five questions from the remaining. Use of scientific calculator is permitted.

- 1. (a) Total number of atoms per unit cell in F.C.C 2 structure is:
 - (i) 1
- (ii) 2
- (iii) 3
- (iv) 4
- (b) Hybridisation in XcF₂ molecule is:

2

- (i) sp^2
- (ii) sp^3
- (iii) sp³d
- (iv) sp^2d
- (c) Acidity among halo acids follows the order:
 - (i) HF <HCl <HBr <HI
 - (ii) HI <HBr <HCl <HF
 - (iii) HBr <HI <HF <HCl
 - (iv) HCl <HF <HI <HBr

(d) The correct sequence for the increasing basic character for the given ions is:

2

2

2

2

(i)
$$F^- < NH_2^- < OH^- < CH_3^-$$

(ii)
$$NH_2^- < OH^- < CH_3^- < F^-$$

(iii)
$$F^- < OH^- < NH_2^- < CH_3^-$$

(iv)
$$$$

(e) For an ideal gas:

(i)
$$\left(\frac{\partial E}{\partial v}\right)_T > 0$$
 (ii) $\left(\frac{\partial E}{\partial v}\right)_T < 0$

(iii)
$$\left(\frac{\partial E}{\partial v}\right)_T = 0$$
 (iv) $\left(\frac{\partial E}{\partial v}\right)_T = 1$

(f) The coefficient of performance of a refrigerator working reversibly is given by :

(i)
$$C = \frac{T_2}{T_2 - T_1}$$
 (ii) $C = \frac{T_1}{T_2 - T_1}$

(iii)
$$C = \frac{T_1}{T_2 + T_1}$$
 (iv) $C = \frac{T_2}{T_1 + T_2}$

 T_2 = higher temperature

 T_1 = lower temperature

(g) Which of the following has activating effect on electrophilic aromatic substitution reaction?

$$(i)$$
 - F

(h) Water gas is: 2 CO + H₂(i) (ii) $CO_2 + H_2$ (iii) $CH_4 + H_2O$ (iv) $CO + H_2O + CH_4$ $CaC_2 + H_2O \rightarrow X + Ca(OH)_2$, The product (i) 2 'X' formed is: CH_4 (i) CO₂ (ii) $CH \equiv CH$ **HCOOH** (iii) (iv) (j) Which of the following amino acid contain 2 sulphur? Methionine Isolencine (i) (ii) (iii) Histidine (iv) Serine 2. (a) Define degree of freedom. 2 (b) Calculate the number of components in a 2 system containing three solids Fe₃O₄, FeO and Fe₂O₃. Draw schematic phase diagram for water. (c) 6 The freezing point of Benzene is 278.6 K and 2 3. (a) its latent heat of fusion is 9.83kJ mol⁻¹ calculate the value of K_f for benzene. Write the expression for the equilibrium (b) 6 constant Kp in terms of the degree of dissociation "α" and the total pressure "P" for the reaction N_2O_4 (g) \rightleftharpoons 2 NO_2 (g). (c) Define Le Chatelier Principle. 2

4.	(a) (b) (c) (d)	Define molar conductance. What is Kohlraush law? Write the Henderson-Hasselbach equation. For the galvanic cell $Cd \mid Cd^{2+}(0.05M) \mid Cl^{-}(0.1M) \mid Cl_{2} \text{ (1atm)} \mid Pt, calculate the EMF at 298 K if E°=1.76 V.$	2 2 2 4
5.	(a)	What are plasticizers and stabilizers? Give an example of stabilizer.	3
	(b)	What are condensation polymers? Give two examples of condensation polymers.	3
	(c)	Name different kinds of chlorophylls. Give two characteristic features of each.	4
6.	(a)	Draw the typical growth pattern for a bacterial population in batch culture.	, 4
	(b)	What do you understand by micropropagation? What are the basic steps required during micropropagation?	4
	(c)	What are monoclonal antibodies?	2
7.	(a)	Show the mechanism of nitration on benzene.	6
	(b)	Write the IUPAC name of :	2
		CH ₃	
	(c)	Complete the reaction sequence	2
		$CH_3-C \equiv C-H+H_2O \xrightarrow{H_2SO_4} X$	

- **8.** (a) Draw the *d*-orbital energy diagram for 5 square-planar complex.
 - (b) What are the factors that affect magnitute 3 of Δo ?
 - (c) What is spectrochemical series?
- 9. (a) Calculate the uncertainty in the position of a particle when the uncertainty in the momentum is:
 - (i) zero
 - (ii) 1×10^{-7} kg msec⁻¹ [h=6.62×10⁻³⁴ J sec]

3

- (b) Which state of the triply ionized Beryllium (Be³⁺) has the same orbital radius as that of the ground state of Hydrogen atom?
- (c) Calculate the ratio of U²³⁸ to Ra²²⁶ atom in 4 natural Uranium.

$$T_{1/2}$$
 of $U^{238} = 4.49 \times 10^9$ years

$$T_{1/2}$$
 of Ra²²⁶ = 1622 years

10. (a) For the dissociation of O_3 , the proposed 8 mechanism is $O_3 \stackrel{K_1}{\leftarrow K_2} O + O_2$

$$O + O_3 \xrightarrow{K_3} 2O_2$$

Obtain the rate law consistant with it.

(b) The first order rate constant for the decomposition of N_2O_5 is 6.2×10^{-4} s⁻¹. Determine the half-life for this decomposition.