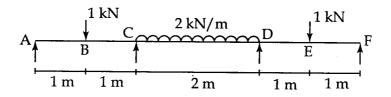
BACHELOR OF ARCHITECTURE

Term-End Examination December, 2011

BAR-024: THEORY OF STRUCTURE-III

Time	: 3	hours Maximum Marks : 70
Note		Question No.1 is compulsory . Attempt any four questions from the remaining questions. Use of scientific calculator is permitted .
1.	Ch	oose the most appropriate option in each of
	the	following questions: $7x2=14$
	(a)	Equal and opposite forces applied to a bar tend to elongate it. The stress, so produced in it, is called stress.
		(shear/tensile/transverse)
	(b)	For a cantilever with uniformly distributed load of W kN over its entire length L, the maximum bending moment will be equal to
		
		$\left(\frac{\text{WL}}{2}/\text{WL}/2\text{WL}\right)$
	(c)	The bending moment on a section is maximum where shearing force
	/ 1\	(is maximum/ is minimum/ changes sign)
	(d)	A long vertical member subjected to an axial compressive load is called a
		(Stanchion/tie/column)


(e) The reaction at the supports will be perpendicular to the plane of the support, if the frame structure rests on a support.

(roller/ hinged/ fixed)

- (f) The centre of gravity of a homogeneous body is the point at which the whole _____ of the body is assumed to be concentrated. (volume/ area/ weight)
- (g) MI of a square of side b about an axis through its CG is equal to _____.

$$\left(\frac{b^4}{12}/\frac{b^4}{8}/\frac{b^4}{4}\right)$$

2. (a) Draw the SFD and BMD for the beam shown below:

- (b) Differentiate between movable and 7 immovable hinged support.
- 3. (a) Derive relation between BM and SF.
 - (b) Discuss statically determinate and 7 Indeterminate trusses.

7

- 4. Prove that the CG of a triangular plate must (a) lie at the intersection of the medians.
 - (b) State the three equilibrium conditions for a column. Explain the factors on which the 7 ultimate compressive load for a column depends.

7

5. (a) Determine the MI of an I shaped area about 7 its centroidal axis as shown in Figure 1. (dimensions are in mm)

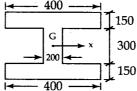


Figure.1

(b) Explain the properties of influence lines.

- Explain the necessity of the study of 6. (a) deflection in a beam. Write down its importance with regard to safety of beam.
 - (b) Discuss the uses and advantages of 7 composite sections.
- 7. Write short notes on any four of the followings:

(a) Permissible stresses in compression members.

- Encased columns (b)
- Resolution and composition of forces (c)
- (d) Moment of coplanar forces
- (e) Static equilibrium conditions.