$\begin{array}{cc}\underset{\sim}{N} & \text { MCA (Revised) } \\ \infty & \text { Term-End Examination } \\ \sim & \text { December, 2011 } \\ & \\ & \text { MCSE-004 } \\ & \text { NUMERICAL AND STATISTICAL }\end{array}$ COMPUTING

Time : 3 hours
Maximum Marks : 100

Note : Question No. 1 is compulsory. Attempt any three from the rest. Use of calculator is allowed.
1.
(a) Define Error.
$2+6$
Solve the quadratic equation $x^{2}+9.9 x-1=0$ using two decimal digit arithmetic with rounding.
(b) Use Bisection Method to find a root of the equation $x^{3}-4 x-9=0$. Go upto 5 iteration only.
(c) Solve the equations :
$2 x+3 y+z=9$
$x+2 y+3 z=6$
$3 x+y+2 z=8$
by LU decomposition Method.
(d) From the following table. Find the value of $\mathrm{e}^{1.17}$, using backward interpolation formula.

X	1.00	1.05	1.10	1.15	1.20
e^{X}	2.7183	2.8577	3.0042	3.1582	3.3201

(e) Evaluate the integral $\int_{0}^{6}\left(x^{2}+x+2\right) \mathrm{d} x$ using 8 Trapezoidal rule with $\mathrm{h}=1.0$
2. (a) Find a real root of the equation
$x^{3}+x^{2}-1=0$
on the interval [0,1] using successive iteration method, upto three iterations only.
(b) Use Gauss Elimination to solve the system of equations.

$$
\begin{aligned}
& 10 x_{1}-7 x_{2}=7 \\
& -3 x_{1}+2.099 x_{2}+6 x_{3}=3.901 \\
& 5 x_{1}-x_{2}+5 x_{3}=6
\end{aligned}
$$

upto 3 iterations only.
3. (a) Use Runge - Kutta method to solve the initial value problem.
$y^{\prime}=(t-y) / 2$ on $[0,0.2]$ with $y(0)=1$.
Compare the solutions with $h=0.2$ and 0.1.
(b) Evaluate the integral $\mathrm{I}=\int_{0}^{\mathrm{P} / 2} \sin x \mathrm{~d} x$ 10

Using the Gauss-Legendre formulas. Compare with the exact solution (the exact value is $I=1$).
4. (a) Find the Lagrange interpolating polynomial of degree 2 approximating the function $y=\ln x$ defined by the following table of values. Hence determine the value of $\ln 2.7$.

X	2	2.5	3.0
$\mathrm{y}=\ln x$	0.69315	0.91629	1.09861

Also estimate the error in the value of y.
(b) $\int_{1}^{6}[2+\sin (2 \sqrt{x})] d x$

Evaluate the above integral using trapezoidal rule with 5 points.
5. (a) A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins in boxes of 100 and guarantees that not more than 10 pins will be defective. What is the approximate probability that a box will fail to meet the guaranteed quality?
(b) Find the most likely price in Bombay corresponding to the price of Rs. 70 at Calcutta from the following :

> Calcutta Bombay

Average price $\quad 65 \quad 67$
Standard $\quad 2.5 \quad 3.5$
Deviation
Correlation coefficient between the prices of commodities in the two cities is 0.8 .
(c) Show that the moment generating function of a random variable χ which is chi - square distributed with v degrees of freedom is $\mathrm{M}(\mathrm{t})=(1-2 \mathrm{t})^{-\mathrm{V} / 2}$.

