No. of Printed Pages : 3

MCSE-004

MCA (Revised)

Term-End Examination

December, 2011

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours

07821

Maximum Marks : 100

Question No. 1 is compulsory. Attempt any three from Note : the rest. Use of calculator is allowed.

1.	(a)	Define Error.		
		Solve the quadratic equation $x^2 + 9.9x - 1 = 0$ using two decimal digit arithmetic with rounding.		
	(b)	Use Bisection Method to find a root of the equation $x^3 - 4x - 9 = 0$. Go upto 5 iteration only.	8	
	(c)	Solve the equations :	8	

(C) Solve the equations :

2x + 3y + z = 9

x + 2y + 3z = 6

3x + y + 2z = 8

by LU decomposition Method.

MCSE-004

P.T.O.

(d) From the following table. Find the value of $e^{1.17}$, using backward interpolation formula.

X	1.00	1.05	1.10	1.15	1.20
e ^x	2.7183	2.8577	3.0042	3.1582	3.3201

8

(e) Evaluate the integral
$$\int_{0}^{0} (x^2 + x + 2) dx$$
 using 8

6

Trapezoidal rule with h = 1.0

(a) Find a real root of the equation 10 $x^3 + x^2 - 1 = 0$

on the interval [0,1] using successive iteration method, upto three iterations only.

(b) Use Gauss Elimination to solve the system 10 of equations.

$$10x_1 - 7x_2 = 7$$

- 3x₁ + 2.099x₂ + 6x₃ = 3.901
5x₁ - x₂ + 5x₃ = 6
upto 3 iterations only.

3. (a) Use Runge - Kutta method to solve the initial **10** value problem.

y' = (t-y)/2 on [0,0.2] with y(0) = 1.

Compare the solutions with h = 0.2 and 0.1.

(b)

2.

Evaluate the integral I =
$$\int_{0}^{P/2} \sin x \, dx$$
 10

Using the Gauss-Legendre formulas. Compare with the exact solution (the exact value is I = 1).

MCSE-004

4.

5.

(a) Find the Lagrange interpolating polynomial of degree 2 approximating the function y = ln x defined by the following table of values. Hence determine the value of ln 2.7.

10

8

4

X	2	2.5	3.0
y = ln x	0.69315	0.91629	1.09861
	1	• •1	1 (

Also estimate the error in the value of y.

(b)
$$\int_{1}^{6} [2 + \sin(2\sqrt{x})] dx$$
 10

Evaluate the above integral using trapezoidal rule with 5 points.

- (a) A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins in boxes of 100 and guarantees that not more than 10 pins will be defective. What is the approximate probability that a box will fail to meet the guaranteed quality ?
 - (b) Find the most likely price in Bombay corresponding to the price of Rs. 70 at Calcutta from the following :

	Calcutta	Bombay
Average price	65	67
Standard	2.5	3.5
Deviation		

Correlation coefficient between the prices of commodities in the two cities is 0.8.

(c) Show that the moment generating function of a random variable χ which is chi - square distributed with v degrees of freedom is $M(t) = (1-2t)^{-V/2}$.

MCSE-004

3