\square	MCA (Revised)
\bigcirc	
∞	Term-End Examination

December, 2011

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Find the order and degree of each of the 4 following recurrence relation. Also find whether they are homogeneous or non-homogeneous ?
(i) $a_{n}=\sqrt{a_{n-1}}+a^{2}{ }_{n-2}$
(ii) $a_{n}=a_{n-1}+a_{n-2}+\ldots . .+a_{0}$
(b) Find the recurrence relation whose solution 3 is given by $a_{n}=A \cdot 3^{n}+B(-4)^{n}$.
(c) Solve the recurrence relation given by
$a_{n}-5 a_{n-1}+6 a_{n-2}=0$
where $a_{0}=2$ and $a_{1}=5$.
(d) Draw the graph $k_{2,5}$
(e) Show that for a subgraph H of a graph G , $\Delta(\mathrm{H}) \leq \Delta(\mathrm{G})$
(f) If a graph of n vertices is isomorphic to its complement, how many vertices it must have?
2. (a) Determine whether the graphs are 4 isomorphic.

(b) Show that a graph G without parallel edges or self loop with n vertices and k components can have at most ($\mathrm{n}-\mathrm{k}$) $(\mathrm{n}+\mathrm{k}=1) / 2$ edges.
3. (a) Check that $a_{n}=\frac{3}{2} n-2$ is a solution to the 5
recurrence $a_{n}=2 a_{n / 2}+2$, where n is a power of 2 and $a_{2}=1$.
(b) Solve the recurrence relation $\mathrm{T}_{\mathrm{n}}=2 \mathrm{~T}_{\mathrm{n}-1}+1 \quad 5$ if $\mathrm{n} \geqslant 2$ and $\mathrm{T}_{1}=1$, using generating function.
4. (a) Show that the graph in the fig. given below has a Hamiltonian circuit.

(b) What is the chromatic number of the 2 following graph?

(c) Whether the following graph contains Euler 4 circuit or not?

5. (a) Solve the recurrence relation
$a_{n+1}^{2}=5 a_{n}^{2}, \quad$ where $a_{n}>0$ and $a_{0}=2$.
Find a_{8}
(b) Show that K_{5} is not planar.
(c) How many integer solutions are there to 3 $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=28$ with $a_{k}>k$ for each $k, 1 \leq k \leq 5$?
