MCA (Revised)

Term-End Examination 12240
December, 2011

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHM

Time : 3 hours
Maximum Marks : 100
Note: Question No. 1 is compulsory. Attempt any three from the rest of the questions.

1. (a) Explain the relation/difference between a 2 problem and its instance through an example of each.
(b) State and describe any one of the following 2 two problems :
(i) The Four - Colour Problem
(ii) The Fermat's Last Theorem
(c) State any four characteristics of an 4 algorithm, with an appropriate examples.
(d) Let $\lfloor x\rfloor$ denote floor function of x and $\lceil x\rceil \quad 4$ denote ceiling function of x. Find values of :
(i) $\quad 3.4$
(ii) $\lfloor-4.6$
(iii) $\sqrt{2} .7$
(iv) $\lceil\overline{-9} .8$
(e) Using Insertion Sort or Bubble Sort (state before starting the solution, which algorithm for sorting, you are using), sort the following sequence of integers in decreasing order :

$$
\begin{array}{llllll}
85 & 36 & 34 & 109 & 49 & 36
\end{array}
$$

(f) Arrange the following growth rates in increasing order: $\mathrm{O}\left(4^{\mathrm{n}}\right), \mathrm{O}\left(\mathrm{n}^{4}\right), \mathrm{O}(1)$, $O\left(n^{3} \log n\right)$, where ' O ' denotes 'big oh'.
(g) Using Principle of Mathematical Induction, 4 prove that $3^{0}+3^{1}+. .+3^{n}$ is equal to $\left(\frac{1}{2}\right) \cdot\left(3^{n+1}-1\right)$ for all $n \geqslant 1$.
(h) Explain how Binary Search Method finds or fails to find the given value 43 in the sorted array :
$9,13,76,27,36,49,58,79,86$.
(i) Write important properties of Depth - first search strategy for traversing a tree and cite an example of its use.
(j) Explain the essential idea of Dynamic Programming. How does Dynamic Programming differ from Divide and conquer approach for solving problems?
(k) Available currency notes in India are : 4 Rupee 1, 2, 5, 10, 20, 50, 100, 500 and 1000. Explain how to make Rupees 289 by using minimum number of currency notes.
2. (a) Discuss the three control mechanisms in an algorithm :
(i) Direct sequencing
(ii) Selection
(iii) Repetition
(b) Define the function $f(n)=a^{n}$ recursively, where a is a constant real number and $\mathrm{n} \geqslant 0$ is an integer.
(c) Compare the following sorting algorithms 5 on the basis of comparasion of keys and number of assignments :
(i) Selection sort
(ii) Insertion sort
3. (a) Multiply the following two matrices A and 8 B using Strassen's algorithm :
$A=\left[\begin{array}{cc}5 & 6 \\ -4 & 3\end{array}\right] ; B=\left[\begin{array}{cc}-7 & 6 \\ 5 & 9\end{array}\right]$
(b) By taking a suitable example of a tree with 12 at least ten nodes, explain the three rules of traversal :
(i) Pre - order traversal
(ii) In - order traversal
(iii) Post - order traversal
4. (a) Let $C(n, k)=\left(\frac{n}{k}\right)$ denote the number of
combinations of k things out of n given things. Let
$C(i, o)=1$ for all $i=0,1,2, \ldots, n$ and $C(0, j)=0$ for all $\mathrm{j}=1,2, \ldots, k$.
Explain, using Dynamic Programming, how to compute $C(n, k)$ for positive integers n and k.
(b) Using Prim's algorithm, find a minimal spanning tree for the graph, given as follows :

5. (a) Define the following, with at least one 6 appropriate example :
(i) Directed Graph
(ii) Single - Source Shortest Path Problem
(b) Find a regular expression for each of the following languages :
(i) $\left\{a, b, a b, b a, ~ a b b b^{\prime}, b a a, \ldots\right\}$
(ii) $\{\wedge, a, a b b, a b b b b, \ldots\}$
(c) Define the following:
(i) Halting Problem
(ii) Undecidable Problem

