PGDCA / MCA (I Year) / BCA

Term-End Examination

December, 2011

CS-02: INTRODUCTION TO SOFTWARE

Time: 2 hours Maximum N			1arks : 60	
Note: Question number 1 is compulsory. Attempt any three questions from the rest.				
1.	(a)	Design an algorithm and draw a	7	
		corresponding flow chart to compute $\frac{X^n}{n!}$,		
		where $0 < n \le 10$.		
	(b)	Explain the concept of 'spooling' with the	5	
		help of a diagram.		
	(c)	Define mutual exclusion. How does a semaphore solve the mutual exclusion problem? Explain with the help of an example. What are the drawbacks of semaphore?	8	
	(d)	Write a shell program to find the greatest prime number less than 100.	5	
	(e)	What is compiler? Explain the compiler design phases in brief.	5	

2. (a) Discuss the similarities and differences 5 between paging and segmentation. (b) List the major activities performed in the **5** . development of a software product. Also, mention the limitations of the development cycle. 3. (a) Compare and contrast the disk space 6 management methods, the linked list with Bitmap method. Write a short note on 4 GL. Also, write its (b) 4 limitations. 4. (a) Explain the typical phases of Software 6 Development Life Cycle (SDLC). Write the differences between internal and (b) 4 external fragmentation. 5. (a) Consider the following processes in the 6 ready queue (at the same time). **Process** CPU time P_1 3 P_2 P_3 1 P_4 P_5 Calculate the average turnaround time and average waiting time for the processes given by: (i) (ii) RR (quantum=2) **FCFS**

- (b) Define UNIX commands for the following: 1x4=4
 - (i) to create a file using any editor
 - (ii) to run a process in background
 - (iii) to run a command at a specific time
 - (iv) to remove a print job from the print queue.