ADIT/BIT PROGRAMME

Term-End Examination

December, 2011

CSI-32 : DISCRETE MATHEMATICS

Time : 3 hours
Maximum Marks : 75
Note : All questions from section-A are compulsory. Attempt any three from section - B.

SECTION - A

1. State True/False for each of the following and also $\mathbf{1 0}$ give reason for your answer :
(a) If $\mathrm{X}=\{a\}$ then $\mathrm{P}(x)=\{\{a\}\}$, where $\mathrm{P}(x)$ denotes power set of X.
(b) Let $Y=\{a, b\}$, then the following relation R is an equivalence relation on Y :
$\mathrm{R}=\{\{a, a\},\{b, b\},\{c, c\}\}$.
(c) A cycle of length 4 is called a transposition.
(d) Every permutation can be written as a product of cycles.
(e) If $f(x)=x^{2}$ and $g(x)=x^{3}$ then $(f \circ g)(x)=(g \circ f)(x)$.
2. (a) Suppose $X=\{a, b, c, d\}$. Consider the fuzzy sets Y and Z such that :
$Y=\{0.6 / a, 0.2 / b, 1.0 / c, 0.7 / d\}$ and $\mathrm{Z}=\{0.4 / \mathrm{a}, 0.9 / \mathrm{b}, 0.2 / \mathrm{c}, 0.7 / \mathrm{d}\}$ then

Find $\mathrm{Y} \cap \mathrm{Z}$, where ' n / r ' denotes ' n is the degree of membership of r^{\prime}
(b) Show $\mathrm{P} \vee(\mathrm{P} \rightarrow \theta) \vee(\sim \theta)$ is a tautology.
(c) Find Principal Conjunctive Normal form of 4 $(\sim p \vee \sim \theta) \rightarrow(\sim p \vee r)$ where $' \sim x^{\prime}$ denotes 'negation of x^{\prime}.
3. (a) Express $\mathrm{P} \uparrow \theta$ using only \downarrow.
(b) Let R be the relation on Integers defined by $6 x$ is related to y under R if and only if 12 divides $x-y$, where x and y are integers', then R is an equivalence relation.
(c) If $f(x)=3 x+1$ and $g(x)=7 x$ then show that
$\Delta(f \circ g)(x) \neq(g \circ f)(x)$.

SECTION - B

Attempt any three questions from this section.
4. (a) Let A be the set of all rectangles in a plane, and R be a relation on A defined as ' $a \mathrm{R} b$ if and only if a and b have same area, where a and b belong to A^{\prime}. Then R is an equivalence relation on A.
(b) Let $A=\{3,4,5,6\}$,
$B=\{5,8,9,10\}$ and $C=\{4,8,11)$
Find $\sim(A \sim B) \cup(\sim C)$, where ' \sim ' is complementation symbol.
(c) Draw Hasse diagram for the set
$X=\{1,2,3, \ldots-1,16\}$ w.r.t the relation "divides".
5. (a) Draw Venn Diagram showing :
(i) $\mathrm{A} \cap \mathrm{B}=\phi$,
(ii) $C \cap B \neq \phi$ and
(iii) $C \cap A \neq \phi$, where A, B and C are sets.
(b) Among 100 students in a class, 52 got grade
' A ' in the first examination, and 42 got grade ' A ' in the second examination.

If 34 students did not get an ' A ' in either examination, then how many students got ' A ' in both the examinations.
(c) Let $X=\{a, b, c, d\}$ and $Y=\{5,6,7,8\}$ and $f: X \rightarrow Y$ be defined as $f=\{(a, 5),(b, 6)$, $(\mathrm{c}, 5),(\mathrm{d}, 7)\}$ then show f is a function, but f^{-1} is not a function.
6. (a) If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be one-one and onto functions, then show that gof : $\mathrm{X} \rightarrow \mathrm{Z}$ is also one-one and onto function.
(b) Using truth-table, find whether the following is a tautology or not :
$[(p \rightarrow q) \wedge \sim q] \rightarrow \sim p$, where p and q are statements / propositions.
(c) Find whether the two formulae :
(i) $(p \wedge q) \vee(\sim p)$ and
(ii) $(\sim p) \vee q$
are logically equivalent or not.
7. (a) Draw Venn diagram for $(X \cup Y) \cap Z$ where
$X \cap Y \neq \phi X \cap Z_{\neq \phi}$ and $Y \cap Z_{\neq \phi}$.
(b) If $A=\{a, b, c, d, e, f, g\}$ and

$$
B=\{c, d, 1,2,3,4\}
$$

then find $A \Delta B$.
(c) If $f=\left(\begin{array}{llll}2 & 4 & 3 & 1 \\ 1 & 2 & 4 & 3\end{array}\right)$ and $g=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1\end{array}\right)$ are two
permutations, then find permutations ($\mathrm{f} g$) and (g f).

