No. of Printed Pages : 3

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination December, 2011

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours

0673

Maximum Marks: 75

CS-73

Note: Question no. 1 is compulsory. Attempt any three questions from the rest of the question paper.

1. (a) Construct a NDFA that recognizes the 5 following language :

L = { $x \in \{a, b, c\}^*$: x contains a substring 'acaba' }

- (b) What is a grammar of a language and 10 mention its one application in computing ? Enumerate different types of grammar under Chomsky Hierarchy with an example.
- (c) What are regular languages ? Explain with 5 appropriate examples.

CS-73

P.T.O.

(d) Let $\Sigma = \{0, 1\}$ and A and B be the list as given 5 below :

i	List A	List B
	w _i	<i>x</i> _{<i>i</i>}
1	10	101
2	011	11
3	101	011

Find the instance of PCP.

- (e) Distinguish clearly the NP complete and NP 5 hard problems.
- 2. (a) Construct a DFA equivalent for the given 10 NFA- ϵ with the transition diagram as follows :

- (b) Show that the set of regular languages is 5 closed under intersection through an example.
- 3. (a) Construct a PDA for the language 8 $\{0^n \ 1^n \mid n \ge 1\}$ and enumerate all the stages of construction.
 - (b) What is about the universal turing machine ? 7 Cite an example.

CS-73

- 4. (a) Design a TM that recognizes a specified 10 string of 0's and 1's on a tape and prints an 'E' if the number of 1's is even and a 'D' if odd.
 - (b) What is meant by Halting problem ? 5 Explain its significance.
- 5. (a) Show that the function f defined as 5 $\Sigma^2(\Sigma = \{a, b\})$ defined by f(x, y) = x.y is primitive recursive.
 - (b) Let $g(x, y) = 2^{x} + y 3$. Find $H_{y}[g(x, y) = 0]$. 5
 - (c) For the functions $f(x) = 2x^3 + 3x^2 + 1$ and $h(x) = 2x^3 3x^2 + 2$. Show that $h(x) = 2(x^3)$.

CS-73

