BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2011

CS-601 : DIFFERENTIAL AND INTEGRAL CALCULUS WITH APPLICATIONS

Time : 2 hours
Maximum Marks : 75
Note: Question no. 1 is compulsory. Attempt any three more questions from question Nos. 2 to 6 . Use of calculator is permitted.

1. (a) Select the correct answer from the four given alternatives for each part given below.

$$
1 \times 6=6
$$

(i) If $x=a t^{2}, y=2$ at, then $\frac{d y}{d x}$ is equal to:
(A) t
(B) $a t$
(C) $\frac{1}{t}$
(D) $\frac{1}{a t}$
(ii) $\operatorname{Lim}_{\theta \rightarrow 0} \frac{\tan \theta}{\theta}$ is :
(A) 1
(B) 0
(C) ∞
(D) None of these
(iii) The equation of the tangent to the curve $y=2 x^{2}-3 x-1$ at $(1,-2)$ is
(A) $x+y+1=0$
(B) $x-y-3=0$
(C) $x+4 y=1$
(D) None of the above
(iv) If $y=\mathrm{e}^{\cos x}$, then $\frac{d y}{d x}$ is
(A) $e^{\cos x}$
(B) $\sin x \quad e^{\cos x}$
(C) $-\sin x e^{\cos x}$
(D) $e^{\cos x-1}$
(v) $\int\left(x^{2}+1\right)^{3} \cdot 2 x d x$ is:
(A) $\frac{1}{6}\left(x^{2}+1\right)^{6}+\mathrm{C}$
(B) $\frac{1}{2}\left(x^{2}+1\right)^{2}+\mathrm{C}$
(C) $\frac{1}{4}\left(x^{2}+1\right)^{4}+C$
(D) $\frac{1}{8}\left(x^{2}+1\right)+\mathrm{C}$
(vi) $\operatorname{Lim}_{x \rightarrow 0} x \cos x$
(A) 0
(B) 1
(C) ∞
(D) None of these
(b) Fill in the blanks:
(i) $\quad \operatorname{Lim}_{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}=$
(ii) The point of maximum value of the function $f(x)=\sin 2 x$ in the interval

$$
\left[0, \frac{\pi}{2}\right] \text { is } x=
$$

(iii) The value of the definite integral

$$
\int_{0}^{\pi / 2}(5 \sin x+2 \cos x) d x \text { is }
$$

\qquad
(iv) $\operatorname{Lim}_{x \rightarrow 0} \frac{e^{x}-1}{x}$ is
(v) The minimum value of the function $f(x)=x^{3}-3 x$ in the closed interval $[0,2]$ is \qquad
(vi) $\int(4 x+2) \sqrt{x^{2}+x+1} \quad \mathrm{~d} x=$ \qquad
(c) A function $f(x)$ is defined as

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-9}{x-3} & x \neq 3 \\
6 & x=3
\end{array}\right.
$$

Find the limit of $f(x)$ as $x \rightarrow 3$, and prove that the function is continuous for $x=3$.
(d) If $y=\frac{\sin ^{2} x}{1+\cos ^{2} x}$, prove that $\frac{d y}{d x}=\frac{2 \sin 2 x}{\left[1+\cos ^{2} x\right]^{2}}$
(e) Evaluate $\int_{0}^{\pi}(2 \cos x-x) d x$
(f) Show that the height of an open cylinder of given surface, that can contain maximum water, is equal to radius of its base.
(g) If $z=f(x+c t)+\phi(x-c t)$, prove that 3

$$
\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}
$$

(h) Verify Rolle's theorem for the function.

$$
f(x)=\sin x+\cos x \text { on }\left[0, \frac{\pi}{2}\right]
$$

2. (a) Evaluate $\int x^{2} \cos x d x$
(b) Evaluate $\int \frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}} d x$
(c) Evaluate $\int_{0}^{\pi / 2} \frac{\cos 2 x}{\cos x+\sin x} d x$
(d) A cube is expanding in such a way that its edge is changing at a rate of $5 \mathrm{~cm} / \mathrm{sec}$. Compute the rate of change of its volume when its edge is 4 cm long.
3. (a) Prove that the common area between two parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.
$5+5+5$
(b) Solve the differential equation (Any one)
(i) $x \frac{d y}{d x}+y=x^{3} y^{6}$
(ii) $\frac{d y}{d x}=\frac{x^{2}-y^{2}}{2 x y}$
(c) The velocity $v(\mathrm{~km} / \mathrm{min})$ of a moped which starts from rest, is given at fixed intervals of time t (min) as follows :

$t:$	2	4	6	8	10	12	14	16	18	20
$v:$	10	18	25	29	32	20	11	5	2	0

Using Simpson's $1 / 3$ rd rule, Estimate approximately the distance covered in 20 minutes.
4. (a) Examine the differentiability of $f(x)$ at $x=2$.
$5+5+5$

$$
f(x)=1+x \quad x \leq 2
$$

$$
=5-x \quad x>2
$$

(b) If $y=x^{x^{x}}$, then find $\frac{d y}{d x}$
(c) If $y=\sin \left(m \sin ^{-1} x\right)$, prove that:

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}+\left(m^{2}-n^{2}\right) y_{n}=0
$$

5. (a) Show that the curve $x^{3}-3 x y^{2}=2$, and

$$
3 x^{2} y-y^{3}=2 \text { cut orthogonally. } \quad 5+5+5
$$

(b) Find the volume of the largest possible right circular cylinder that can be inscribed in a sphere of radius R.
(c) Find the area included between the parabola $y^{2}=4 a x$ and its latus rectum.
6. (a) Is the function
$f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { when } x \neq 1 \\ 2 & \text { when } x=1\end{cases}$
continuous at $x=1$? Explain your answer.
(b) Find the equations of the tangent and normal to the curve.

$$
4 x^{3}+4 x y+y^{2}=4 \text { at }(0,2)
$$

(c) A right circular cone has a given curved surface 'S'. Show that, its volume will be maximum when the ratio of the height to the base radius is $\sqrt{2}: 1$.

