No. of Printed Pages : 8

CS-601

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2011

CS-601 : DIFFERENTIAL AND INTEGRAL CALCULUS WITH APPLICATIONS

Time : 2 hours

ഹ

016

Maximum Marks: 75

Note : Question no. 1 is *compulsory*. Attempt *any three* more questions from question Nos. 2 to 6. Use of calculator is permitted.

 (a) Select the correct answer from the four given alternatives for each part given below.

 $1 \times 6 = 6$

- (i) If $x = at^2$, y = 2 at , then $\frac{dy}{dx}$ is equal to :
 - (A) *t* (B) *at*
 - (C) $\frac{1}{t}$ (D) $\frac{1}{at}$
- (ii) $\lim_{\theta \to 0} \frac{\tan \theta}{\theta}$ is : (A) 1
 - (C) ∞ (D) None of these

(B)

0

CS-601

P.T.O.

(iii) The equation of the tangent to the curve

$$y = 2x^2 - 3x - 1$$
 at $(1, -2)$ is
(A) $x + y + 1 = 0$

$$(B) \quad x - y - 3 = 0$$

$$(C) \quad x + 4y = 1$$

(D) None of the above

(iv) If
$$y = e^{\cos x}$$
, then $\frac{dy}{dx}$ is
(A) $e^{\cos x}$ (B) $\sin x e^{\cos x}$
(C) $-\sin x e^{\cos x}$ (D) $e^{\cos x - 1}$
(v) $\int (x^2 + 1)^3 .2x \, dx$ is:
(A) $\frac{1}{6}(x^2 + 1)^6 + C$ (B) $\frac{1}{2}(x^2 + 1)^2 + C$
(C) $\frac{1}{4}(x^2 + 1)^4 + C$ (D) $\frac{1}{8}(x^2 + 1) + C$

(vi)
$$\lim_{x \to 0} x \cos x$$

(A) 0 (B) 1 (C) ∞ (D)

(b) Fill in the blanks:

(i)
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4} = ----$$

(ii) The point of maximum value of the function $f(x) = \sin 2x$ in the interval

$$\left[0, \frac{\pi}{2}\right]$$
 is $x =$ _____

(iii) The value of the definite integral

$$\int_{0}^{\frac{\pi}{2}} (5\sin x + 2\cos x) dx \text{ is } -----$$

(iv)
$$\lim_{x \to o} \frac{e^x - 1}{x}$$
 is _____

(v) The minimum value of the function $f(x) = x^3 - 3x$ in the closed interval [0, 2] is _____

(vi)
$$\int (4x+2)\sqrt{x^2+x+1} \, dx =$$

(c) A function f(x) is defined as

$$f(x) = \begin{cases} \frac{x^2 - 9}{x - 3} & x \neq 3\\ 6 & x = 3 \end{cases}$$

Find the limit of f(x) as $x \rightarrow 3$, and prove that the function is continuous for x = 3.

(d) If
$$y = \frac{\sin^2 x}{1 + \cos^2 x}$$
, prove that $\frac{dy}{dx} = \frac{2\sin 2x}{[1 + \cos^2 x]^2}$ 3

(e) Evaluate
$$\int_{0}^{\pi} (2\cos x - x) dx$$
 3

(f) Show that the height of an open cylinder of given surface, that can contain maximum water, is equal to radius of its base.

(g) If
$$z = f(x + ct) + \phi(x - ct)$$
, prove that 3
$$\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$$

(h) Verify Rolle's theorem for the function. **3**

$$f(x) = \sin x + \cos x$$
 on $\left[0, \frac{\pi}{2}\right]$

CS-601

4

2. (a) Evaluate $\int x^2 \cos x \, dx$

(b) Evaluate
$$\int \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$$

(c) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos 2x}{\cos x + \sin x} dx$$

- (d) A cube is expanding in such a way that its edge is changing at a rate of 5 cm/sec.
 Compute the rate of change of its volume when its edge is 4 cm long.
- 3. (a) Prove that the common area between two parabolas $y^2 = 4 ax$ and $x^2 = 4 ay$ is $\frac{16}{3}a^2$. 5+5+5
 - (b) Solve the differential equation (Any one)

(i)
$$x\frac{dy}{dx} + y = x^3y^6$$

(ii)
$$\frac{dy}{dx} = \frac{x^2 - y^2}{2xy}$$

CS-601

P.T.O.

(c) The velocity v (km/min) of a moped which starts from rest, is given at fixed intervals of time t (min) as follows :

<i>t</i> :	2	4	6	8	10	12	14	16	18	20
v :	10	18	25	29	32	20	11	5	2	0

Using Simpson's $\frac{1}{3}$ rd rule, Estimate approximately the distance covered in 20 minutes.

4. (a) Examine the differentiability of f(x) at x = 2.

5 + 5 + 5

$$f(x) = 1 + x \qquad x \le 2$$

$$= 5 - x \quad x > 2$$

(b) If
$$y = x^{x^x}$$
, then find $\frac{dy}{dx}$

(c) If $y = \sin(m \sin^{-1} x)$, prove that :

$$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}+(m^2-n^2)y_n=0$$

CS-601

5. (a) Show that the curve $x^3 - 3xy^2 = 2$, and

$$3x^2y - y^3 = 2$$
 cut orthogonally.

- (b) Find the volume of the largest possible right circular cylinder that can be inscribed in a sphere of radius *R*.
- (c) Find the area included between the parabola $y^2 = 4ax$ and its latus rectum.

6. (a) Is the function

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{when } x \neq 1 \\ 2 & \text{when } x = 1 \end{cases}$$

continuous at x = 1? Explain your answer.

(b) Find the equations of the tangent and normal to the curve.

$$4x^3 + 4xy + y^2 = 4$$
 at (0, 2)

P.T.O.

5 + 5 + 5

5 + 5 + 5

(c) A right circular cone has a given curved surface 'S'. Show that, its volume will be maximum when the ratio of the height to the base radius is $\sqrt{2}$:1.