BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2011

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time : 3 hours
Maximum Marks : 75

Note : Question No. 1 is compulsory. Attempt any three more questions from questions No. 2 to 6. Use of calculator is permitted.

1. (a) Simplify $\frac{\sqrt{3}-1}{\sqrt{3}+1}$.
(b) Find the slope and the y - intercept of the line whose equation is $5 x+6 y=7$.
(c) Does the equation $x^{2}+y^{2}-12 x+6 y+45=0$ represent a circle ? If yes, find the co ordinates of the centre.
(d) Find the co-ordinates of the focus of the parabola $y^{2}=-4 x$.
(e) For what value of k will the equation $9 x^{2}+k x+1=0$ have real and equal roots ?
(f) Find the equation of the line that is parallel to $2 x+5 y=7$ and passes through the mid point of the line joining $(2,7)$ and $(-4,1)$.
(g) Find $\int_{0}^{\pi}(x-\cos x) d x$
(h) Find the co-ordinates of the point which divides internally the line joining $(1,-3)$ and $(-3,9)$ in the ratio $1: 3$.
(i) Find the points where the function has maximum and minimum values :
$\mathrm{f}(x)=2 x+\frac{3}{x}$.
(j) Find the equation of the circle through the points $(4,1)$ and $(6,5)$ and having its centre on the line $4 x+y=16$.
(k) State Lagrange's mean value theorem.
(l) Find the area of the region bounded by the curve $y=5 x-x^{2}, x=0$, and $x=5$ and lying above the x-axis.
(m) Differentiate y w.r.t. x, where $y=x\left(x^{2}+1\right)$.
(n) Solve the following system of linear equations:
$2 x+3 y=8$
$3 x+4 y=11$
(o) Find the value of the determinant.

$$
\left|\begin{array}{lll}
1 & 2 & 2 \\
2 & 3 & 4 \\
3 & 5 & 6
\end{array}\right|
$$

2. (a) Find the equation of the ellipse whose foci are $(0, \pm 2)$ and length of the minor axis $2 \sqrt{5}$. $3+3+4$
(b) Find the equation of a parabola whose focus is $(5,0)$. Give the equation of directrix also.
(c) Is the function $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-1}{x-1} & \text { when } x \neq 1 \\ 2 & \text { when } x=1\end{array}\right.$ continuous at $x=1$? Explain your answer.
3. (a) If $x=a \cos t, y=\mathrm{a} \sin \mathrm{t}$, then find $\frac{d y}{d x}$. $\quad 3+3+4$
(b) If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=0$, where I is a 2×2 unit matrix.
(c) Evaluate $\int_{0}^{4} \mathrm{e}^{2 x} \mathrm{~d} x$
4. (a) Find the eccentricity and focus of the ellipse

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

$$
3+3+4
$$

(b) Find the real values of x and y which satisfy
the equation $\frac{x+3 i}{2+y i}=1-i$
(c) Can Rolle's Theorem be applied to the following function ?
$y=\sin ^{2} x \quad$ on the interval $[0, \pi]$
Find ' C ' such that $f^{\prime}(C)=0$, in case Rolle's theorem can be applied.
5. (a) If $\sin y=x \sin (a+y)$, $3+3+4$
prove that $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$.
(b) Given the perimeter of a rectangle, show that its area is maximum when it is a square.
(c) Express $\frac{(8-3 i)(6-i)}{2-2 i}$ in the form of $\mathrm{a}+i \mathrm{~b}$ where a and b are real.
6. (a) Find the equation of a cone whose vertex is at the origin and its guiding curve is :

$$
\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1, \quad x+y+z=1
$$

(b) Find the centre and radii of the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y-6 z+5=0$.
(c) Find the coordinates of foci, the vertices, the length of the major axis and minor axis, and the eccentricity of the hyperbola.

$$
9 x^{2}-4 y^{2}=36
$$

