BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2011

CS-60: FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time: 3 hours

Maximum Marks: 75

Note: Question **No. 1** is **compulsory**. Attempt **any three** more questions from questions **No. 2 to 6**. Use of calculator is **permitted**.

1. (a) Simplify $\frac{\sqrt{3}-1}{\sqrt{3}+1}$.

15x3=45

- (b) Find the slope and the y intercept of the line whose equation is 5x + 6y = 7.
- (c) Does the equation $x^2 + y^2 12x + 6y + 45 = 0$ represent a circle ? If yes, find the coordinates of the centre.
- (d) Find the co ordinates of the focus of the parabola $y^2 = -4x$.
- (e) For what value of k will the equation $9x^2+kx+1=0$ have real and equal roots?

- (f) Find the equation of the line that is parallel to 2x + 5y = 7 and passes through the mid point of the line joining (2, 7) and (-4, 1).
- (g) Find $\int_0^{\pi} (x \cos x) dx$
- (h) Find the co-ordinates of the point which divides internally the line joining (1, -3) and (-3, 9) in the ratio 1 : 3.
- (i) Find the points where the function has maximum and minimum values : $f(x) = 2x + \frac{3}{x}.$
- (j) Find the equation of the circle through the points (4, 1) and (6, 5) and having its centre on the line 4x + y = 16.
- (k) State Lagrange's mean value theorem.
- (l) Find the area of the region bounded by the curve $y=5x-x^2$, x=0, and x=5 and lying above the x axis.
- (m) Differentiate y w.r.t. x, where $y = x(x^2 + 1)$.
- (n) Solve the following system of linear equations:

$$2x + 3y = 8$$
$$3x + 4y = 11$$

- (o) Find the value of the determinant.
 - 1
 2
 2

 2
 3
 4

 3
 5
 6

- 2. (a) Find the equation of the ellipse whose foci are $(0, \pm 2)$ and length of the minor axis $2\sqrt{5}$.
 - (b) Find the equation of a parabola whose focus is (5, 0). Give the equation of directrix also.
 - (c) Is the function $f(x) = \begin{cases} \frac{x^2 1}{x 1} & \text{when } x \neq 1 \\ 2 & \text{when } x = 1 \end{cases}$ continuous at x = 1? Explain your answer.
- 3. (a) If $x = a \cos t$, $y = a \sin t$, then find $\frac{dy}{dx}$. 3+3+4
 - (b) If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 5A + 7I = 0$, where I is a 2×2 unit matrix.
 - (c) Evaluate $\int_{0}^{4} e^{2x} dx$
- 4. (a) Find the eccentricity and focus of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$
 - (b) Find the real values of x and y which satisfy the equation $\frac{x+3i}{2+yi}=1-i$

(c) Can Rolle's Theorem be applied to the following function? $y = \sin^2 x$ on the interval $[0, \pi]$ Find 'C' such that f'(C) = 0, in case Rolle's theorem can be applied.

3+3+4

- 5. (a) If $\sin y = x \sin (a + y)$,

 prove that $\frac{dy}{dx} = \frac{\sin^2(a + y)}{\sin a}$.
 - (b) Given the perimeter of a rectangle, show that its area is maximum when it is a square.
 - (c) Express $\frac{(8-3i)(6-i)}{2-2i}$ in the form of a+ib where a and b are real.
- 6. (a) Find the equation of a cone whose vertex is at the origin and its guiding curve is: 3+3+4

$$\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1, \quad x + y + z = 1.$$

- (b) Find the centre and radii of the sphere $x^2 + y^2 + z^2 2x 4y 6z + 5 = 0$.
- (c) Find the coordinates of foci, the vertices, the length of the major axis and minor axis, and the eccentricity of the hyperbola. $9x^2-4y^2=36$.