02910

DIPLOMA IN CIVIL/ELECTRICAL/ MECHANICAL ENGINEERING

Term-End Examination December, 2010

BME-050: ENGINEERING MATERIALS

Time: 2 hours Maximum Marks: 70

Note: Question No. 1 is compulsory. Answer any four from Question No. 2 to 6. Use of non-programmble scientific calculator permitted

Select correct answer from given four alternatives.

14

- (a) A sharp yield point is shown by :
 - (i) copper
- (ii) mild steel
- (iii) medium c steel (iv)
- (iv) cast iron
- (b) Practical definition of a ductile material is that it shows % age elongation in a tension test which is greater than
 - (i) 2 %

(ii) 3.5%

(iii) 5%

- (iv) 7.5%
- (c) A steel specimen tested in tension result in yield strength σ_y and ultimate tensile strength of σ_u . The strain at fracture is ϵ_f . The modulus of toughness is.
 - (i) $(\sigma_y + \sigma_u) \epsilon_f$
- (ii) $\sigma_y \epsilon_f$
- (iii) $\frac{1}{2}\sigma_u \epsilon_f$
- (iv) $\frac{1}{2}(\sigma_y + \sigma_u) \epsilon_f$

- (d) With increasing strain rate in a tension test consider following statements:
 - (1) UTS increases
 - (2) Y.S reduces
 - (3) % age elongation is not affected. Of above statements the correct statement(s) are:
 - (i) 1, 2 and 3
 - (ii) 1 and 2
 - (iii) Only 1
 - (iv) 2 and 3
- (e) An impact test involves following three aspects:
 - (1) A triaxial state of stress (stress concentration)
 - (2) Low temperature,
 - (3) High strain rate or rapid rate of loading of these the factor(s) responsible for brittle fracture of mild steel specimen are.
 - (i) 1 and 2
 - (ii) 2 and 3
 - (iii) 1, 2 and 3
 - (iv) 1 and 3

- (f) The blast furnace is charged from top with a charge consisting of :
 - (i) Iron ore, limestone and coke.
 - (ii) Iron ore, limestone and bituminous coal.
 - (iii) Iron ore and coke.
 - (iv) Iron ore and dolomite.
- (g) Steel is an alloy of iron and carbon essentially with other elements present in the structure. Certain range of carbon percentage in iron does not make a usable steel. This percentage range is
 - (i) 0.8 to 1.2
- (ii) 0.667 to 0.87
- (iii) 1.00 to 1.4
- (iv) 1.3 to 2.2
- (h) With respect to carbon percentage and structure steel is classified into following groups. Choose the correct combination.
 - (i) Hyper-Eutectoid steel contains carbon in excess of 0.8% and structure is pearcite and cementite.
 - (ii) Eutectoid steel contains 0.87% carbon and structure is cementite.
 - (iii) Hypo-eutectoid steel contains carbon in excess of 0.83% and has ferrite and pearlite in its structure.
 - (iv) Hyper-eutectoid contains 0.87% carbon and structure is entirely cementite.

- (i) Jomin test is performed on steel to assess its
 - (i) Hardness (ii) Hardenability
 - (iv) Heat treatability
- (i) Tempering treatment given to steel
 - (i) Improves ductility and toughness
 - (ii) Increases hardness

Ductility

(iii)

- (iii) Increases ultimate tensile strength
- (iv) Reduces impact strength.
- (k) Choose the correct statement in respect of cast iron.
 - (i) Gray cast iron is harder and difficult to machine.
 - (ii) While cast iron consists of pearlite, cementite and ledeburite in its structure.
 - (iii) Gray cast iron contains greater percentage of silicon which makes it hard.
 - (iv) The hardness of white cast iron varies between 150 and 320 BHN.
- (l) Choose correct statement in respect of copper alloys.
 - (i) Essential contents of bronze are Cu and Zn.
 - (ii) Red brass is used for making springs.
 - (iii) Brass has better corrosion resistance than bronze.
 - (iv) Bronze is stronger than brass and is used as bearing material.

- (m) Choose the correct statement.
 - (i) Thermal conductivity of glass and graphite reduces with increasing temperature.
 - (ii) Thermal conductivity of glass reduces and that of graphite increases with increases temp.
 - (iii) Thermal conductivity of glass increasing and that of graphite reduces with increasing temp.
 - (iv) Thermal conductivity of glass and graphite is not affected by increasing temp.
- (n) Best combination of strength, density and modulus of elasticity is available in
 - (i) Carbon fibre
- (ii) Glass fibre
- (iii) Kelvar
- (iv) Boron fibre.
- 2. (a) A mild steel specimen is held in a universal testing machine and gradually pulled until the fracture occurs. Draw the load elongation diagram and mark following points.
 - (i) Elastic limit
 - (ii) Upper and lower yield points
 - (iii) Ultimate tensile strength.

Define percent elongation and indicate how it can be measured from above diagram.

9

- (b) A tension test specimen records 40,000 N force over a period of ¹/₂ min. During this time the initial gauge length of 100mm changes to 115mm. If the mechanical efficiency of the machine is 75%. Calculate power consumed by electric motor.
- 3. (a) Sketch a blast furnace and mark various reaction zones on the sketch. Show how the slag and iron are tapped separately. What is the slag and what are its uses?
 - (b) What is a plain carbon steel? How is plain 7 carbon steel classified? Describe applications of plain carbon steels.
- 4. (a) Describe a Time- Temperature- 8
 Transformation diagram for plain carbon steel.
 How can you obtain such a diagram? What is the use of T-T-T diagram. Explain by giving examples of austempering and mar tempering.
 - (b) What are the effects of alloying elements like S,P,Si and Mn in plain carbon steel. The alloy steel containing Ni,Cr and V are commonly used. What properties do these elements provide in alloy steels?

- 5. (a) Brass, Bronze, Monet metal and German 7
 Silver are common alloys of Cu. Describe
 the alloying elements in each and mention
 at least one application of each alloy.
 - (b) What are the desirable properties in a 5 bearing material? describe alloys that are used as bearing materials.
- 6. (a) What is a polymer and what is 7 polymerization? Distinguish between addition polymerization and condensation polymerization. Describe three application for three polymers (one each)
 - (b) What is wear? What are different method of reducing wear of materials. Describe carburizing and cyniding treatments for steel components.