ADCA / MCA (II Year)

Term-End Examination

04883

December, 2010

CS-08 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 hours

Maximum Marks: 75

Note: (i)

- (i) Use of calculator is allowed.
- (ii) Question number 1 is compulsory. Answer any three questions from the rest.
- 1. (a) What is the final value of A in the following program? 10x3=30

$$A = 4.56$$

$$A = (A + 0.05) * 20$$

$$I = A$$

$$A = I$$

$$A = A/10.0$$

Further, if the value of A were taken as 4.54 instead of 4.56 at the beginning of the above program, what would be the final value?

(b) What is the value of I calculating in the following arithmetic statements?

(i)
$$I = J*4/5 + K/2 + 8 - J**3/8$$

$$(J=2, K=5)$$

(ii)
$$I = B/2.0 + B*6.0/(A - B) + A**4$$

$$(A = 1.5, B = 4.0)$$

(iii)
$$I = J/2*4+5/2+J**4$$

$$(J=3)$$

(c) Write a FORTRAN 90 statement for each of the following:

(i)
$$s = \frac{p^2 - q^2}{p^3 + q^2} + \frac{rt^3}{8t}$$

(ii)
$$x = 4s^3 + \sqrt{(ab)^d}$$

(iii)
$$s = ut + \frac{1}{2} ft^2$$

- (d) The mean of 200 items was 50. Later on it was discovered that two items were misread as 92 and 8 instead of 192 and 88. Find the correct mean?
- (e) Suppose X, Y and Z have been defined. Write a FORTRAN program fragment which interchanges the value of X, Y and Z so that X has Y's value, Y has Z's value, and Z has X's value.
- (f) The horizontal range of a projectile fired at an angle A is

Range =
$$\frac{u^2}{g} \sin(2A)$$

Where u is the velocity of the projectile and g is the acceleration of gravity (g = 9.8 ms⁻²). Assuming a projectile velocity of 90 m/sec, write a FORTRAN program that will print a table of distances achieved by the projectile for angles of inclination A from 10° to 80°. Use the sign function of the system – i.e. SIN (X) where X is an angle expressed in radians.

(g) Find the regression line of y on x for the following data:

x:	5	7	8	4	6
y :	2	4	3	2	4

(h) If the mean of the following frequency distribution is 14, find the value of k.

x:	5	10	15	20	25
<i>f</i> :	7	k	8	4	5

- (i) One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?
- (j) What value will be stored in location K at the end of the following sequence? Justify your answer.

- 2. (a) In an electrical engineering class, there are
 20 juniors, 15 seniors and 5 graduate
 students. If the juniors averaged 71 in the
 mid-term examination, the seniors averaged
 80 and the mean for the entire class is
 76.625, then find the average for the
 graduates.

 3x5=15
 - (b) Calculate the Cost of Living Index Number from the table given below:

Sl. No.	Group	Index for 2008	Expenditure	
1	Food	5500	46%	
2	Clothing	2150	10%	
3	Fuel and Lighting	2200	7%	
4	House Rent	1500	12%	
5	Miscellaneous	2750	25%	

(c) A food processor uses a moving average to forecast next month's demand. Past actual demand (in units) is as shown in the accompanying table:

Month	43	44	4 5	46	47	48	49	50	51
Actual Demand	105	106	110	110	114	121	130	128	137

- (i) Compute a simple 5-month moving average to forecast demand for month 52.
- (ii) Compute a weighted 3-month moving average where the weights are highest for the latest months and descend in order of 3, 2, 1.
- 3. (a) Write a FORTRAN program to read 50 numbers a_1 , a_2 , a_3 ,, a_{50} , and print them in the order a_{50} , a_{49} , a_{48} ,, a_1 . 3x5=15
 - (b) Write a FORTRAN program which will calculate and print out the product of all of the odd integers from 111 to 1111.
 - (c) The moving-average forecast and actual demand for a hospital drug are as shown in the accompanying table.

Month	Actual Demand	Forecast Demand		
27	7 1	78		
28	80	7 5		
29	101	83		
30	84	84		
31	60	88		
32	7 3	85		

Compute the MAD.

- 4. (a) A factory manufacturing televisions has four units A, B, C, D. The units A, B, C, D manufactures 15%, 20%, 30% and 35% of the total output respectively. It was found that out of their output 1%, 2%, 2% and 3% are defective. A television is chosen at random from the output and found to be defective. What is the probability that it came from the unit D?

 3x5=15
 - (b) A random variable X has the following probability function:

x	0	1	2	3	4	5	6	7
p(x)	0	K	2K	2K	3K	K ²	2K ²	1K ² +K

- (i) find K
- (ii) Evaluate P (X < 6), P (X \geq 6), P (3 < X \leq 6)
- (c) Calculate mean, variance and standard Deviation for the following distribution :

Classes	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100
Frequency	3	7	12	15	8	3	2

5. (a) The following regression equations were obtained from a correlation table: 3x5=15

$$y = 0.516x + 33.73$$

$$x = 0.512y + 32.52$$

Find the value of

- (i) the correlation co-efficient
- (ii) the mean of x's and
- (iii) the mean of y's

(b) What will be printed by the following program?

PROGRAM VYAS DEV **IMPLICIT** NONE REAL a, b, P, Q, R INTEGER X, Y, Z a = 2.5b = 4.0P = a + bX = a + bQ = a * bY = a * bR = P/OZ = X/YPRINT *, P, Q, R PRINT*, X, Y, Z **STOP END**

(c) The chances that doctor A will diagnose a disease X is 60%. The chances that a patient will die by his treatment after correct diagnosis is 40% and the chances of death by wrong diagnosis is 70%. A patient of doctor A who had disease X, died. What is the chance that his disease was diagnosed correctly?

- 6. (a) If 20% of the bolts produced by a machine are defective, determine the probability that out of 4 bolts chosen at random 3x5=15
 - (i) 1
 - (ii) 0
 - (iii) at most 2

bolts will be defective.

- (b) Write a FORTRAN 90 statement for each of the following:
 - (i) $E = mc^2$

(ii)
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$$

(iii)
$$R = X^2Y^3 + \sqrt{(X + Y) Z}$$

$$\text{(iv)} \quad F = \frac{1}{4\pi\varepsilon_0} \; \frac{Q_1Q_2}{r^2}$$

(v)
$$Z = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

(c) The sum of the squares of the first n natural numbers is given by

$$s = \frac{n (n + 1) (2n + 1)}{6}$$

Write a FORTRAN program that will find s for $n = 10 \{10\} 250$, i.e. n = 10, 20, 30, ..., 250.