BACHELOR IN COMPUTER APPLICATIONS

04646

Term-End Examination
December, 2010

CS-60: FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time: 3 hours

Maximum Marks: 75

Note:

Question no. 1 is compulsory. Attempt any three questions from question no. 2 to 6. Use of calculator is permitted.

- 1. (a) If x and y be any real numbers, then 15x3=45 $|x|^2 = x^2 = |-x|^2$
 - (b) Tell for each of the following statements, whether it is true or false.
 - (i) R, the set of real numbers, is closed under multiplication operation.
 - (ii) In R, the operation of addition is not commutative.
 - (iii) Addition is Montone is R, i.e if a > b then a+c>b+c for all a, b, c in R.

- (c) Show that the function $f: R \rightarrow R$ defined as f(x) = 4x + 11 for all x in R is onto R.
- (d) If $y = 81 + 17x^2$ then find dy/dx.
- (e) Evaluate: $\int_2^3 3x^2 dx$
- (f) Find the equation of a straight line that passes through the points (1,2) and (-3,4).
- (g) Find the equation of a circle with centre as (3, 5) and radius as 8 units.
- (h) If $A = \{2, 3, 4, 5, 6,\}$ and $B = \{4, 6, 7, 8,\}$ then

Find out the sets $A \cup B$ and $A \cap B$.

- (i) obtain $\frac{3+7i}{1-i}$ in the form a+ib, $ab \in \mathbb{R}$
- (j) Solve the system of simultaneous equations : 2x + y = 7 and 5x + 3y = 18
- (k) Evaluate $\begin{vmatrix} a & 2a & d \\ b & 2b & e \\ c & 2c & f \end{vmatrix}$ where a, b, c, d, e, f \in R.
- (l) Find the locus of a point which moves so that its distance from the point (1,0) is equal to its distance from the axis of y.
- (m) Show that the points (2, 8), (5, 7), (-1, -1), (7, 3) and (6, 0) are concyclic.

- (n) Find the equation of the ellipse whose foci are $(\pm 3, 0)$ and eccentricity is $\frac{1}{3}$.
- (o) Find the equation of the hyperbola whose foci are $(0, \pm 6)$ and conjugate axis is $2\sqrt{11}$.
- 2. (a) Evaluate the integral 4+3+3 $\int (4x+8x^4) dx$
 - (b) Evaluate the integral $\int (2\cos x + 2e^x + 5\sin x) dx$
 - (c) Find the area of the smaller region lying above the x-axis and included between the circle $x^2+y^2=2x$ and the parabola $y^2=x$.
 - (a) Find the equation of the circle passing through the point (-6, 5), (-3, -4) and (2, 1). What are the co-ordinates of the centre of the circle.
 - (b) Show that the line y=2x+3 touches the parabola $y^2=24x$ and find the coordinates of the point of contact.
 - (c) Find the standard equation of the $\label{eq:continuous} \mbox{\$ hyperbola with eccentricity}\, \sqrt{2} \; .$

- 4. (a) A man wants a name plate with display area equal to 48 cm² bordered by a white strip 2 cm along top and bottom and 1 cm along each of the two remaining sides.

 What dimensions should the plate have so that the total area of the plate is a minimum?
 - (b) Find the oblique asymptotes to the curve given by : $x^3 + y^3 = 3ax^2$
 - (c) Find the value of the determinant

$$\begin{vmatrix} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{vmatrix}$$

5. (a) Prove that for sets A and B

$$A \cap B = B \cap A$$

- (b) Find the formula for $\cos 4\theta$ in terms of $\cos \theta$ and $\sin \theta$
- (c) Solve the equation $x^2 10x + 40 = 0$
- 6. (a) Show that in three dimensional space the

line
$$x-1 = \frac{1}{2} (y-3) = \frac{1}{3} (z-5)$$
 meets the

line
$$\frac{1}{3}(x+1) = \frac{1}{5}(y-4) = \frac{1}{7}(z-9)$$

4+3+3

- (b) Find the equation for the sphere through the points (0, 0, 0), (0, 1, -1), (-1, 2, 0) and (1, 2, 3)
- (c) Find the equation of the cone passing through $2x^2+3y^2+4z^2=1$ and x+y+z=1