No. of Printed Pages: 15

MCC-002

POST GRADUATE DIPLOMA IN CLINICAL CARDIOLOGY (PGDCC)

00627

Term-End Examination

December, 2010

MCC-002: FUNDAMENTALS OF CARDIOVASCULAR SYSTEM - II

Time: 2 hours

Maximum Marks: 60

Note:

- (i) There will be multiple choice type of questions in this examination which are to be answered in **OMR Answer Sheets**.
- (ii) All questions are compulsory.
- (iii) Each question will have four options and only one of them is correct. Answers have to be marked in figures in the appropriate rectangular boxes corresponding to what is the correct answer and then blacken the circle for the same number in that column by using HB or lead pencil and not by ball pen in OMR Answer Sheets.
- (iv) If any candidate marks more than one option, it will be taken as the wrong answer and no marks will be awarded for this.
- (v) Erase completely any error or unintended marks.
- (vi) There will be 90 questions in this paper and each question carries equal marks.
- (vii) There will be no negative marking for wrong answers.
- (viii) No candidate shall leave the examination hall at least for one hour after the commencement of the examination.

MCC-002 1 P.T.O.

1.	Which of the	following is	True a	about 2 D	Echo ?
----	--------------	--------------	--------	-----------	--------

- (1) 2 D Echo uses the principle of ultrasound.
- (2) Lower frequency probes give better penetration.
- (3) 7.5 MHz probe is best suited for pediatric than adult examination.
- (4) All of the above.

2. Pressure gradients are assessed with:

(1) M-Mode

- (2) Pulse Doppler
- (3) Continuous wave doppler
- (4) Colour doppler.

3. The advantages of M-Mode are:

- (1) evaluation of rapidly moving structure and endocardium.
- (2) visualisation of minute changes in wall and valve motion.
- (3) accurate measurement of chamber dimensions.
- (4) all of the above.

4. Spot the FALSE statement:

- (1) Pw measures flow velocity only of sample volume.
- (2) Pulse doppler has one crystal.
- (3) Pulse doppler can be done by duplex transducer as well as non-imaging tranducer.
- (4) Maximal measurable velocity without aliasing is usually < 2m/s.

5. What is the colour of doppler when blood is flowing towards the transducer?

(1) Red

(2) Yellow

(3) Blue

(4) Mosaic

(1) $\Delta P = 4 \left(V_2^2 - V_1^2\right)$

(2) AV area = $120/ + \frac{1}{2}$ ms

(3) $A_1V_1 = A_2V_2$

(4) $PASP = 4V^2 + RA Pressure$

	(1)	Tolluli Tig	(2)	40mm ng
	(3)	64mm Hg + RAP	(4)	84mm Hg
8.		diameter on expiration 1.8cm and alld be :	on ins	piration 0.8cm. The RA pressure estimate
	(1)	0 - 5mm Hg	(2)	5 - 10mm Hg
	(3)	10 - 15mm Hg	(4)	15 - 20mm Hg
9.	2 D	Echo evaluation revealed DT 280m	n Sec.	IVRT 98ms E/A 0.8 :
	(1)	Normal filling	(2)	impaired relaxation
	(3)	Pseudonormal pattern	(4)	Restrictive filling
10.	A w	all motion score index of 1 indicate	es:	
	(1)	Normally contracting LV	(2)	perfusion detect of > 20 %
	(3)	small infarct	(4)	extensive infarct
11.	Spot	the FALSE statement :		
	(1)	Anterior infarcts more commonly	forn	n, Ventricular aneurysm.
	(2)	Ventricular pseudoaneurysm are	comr	nons in posterior infarcts.
	(3)	Infarct expansion usually occurs	in a k	inetic segments.
	(4)	Earliest abnormality to appear af	ter pr	olonged ischemia is syntotic dysfunction.
12.	M m	node measurement of 13mm of peri	icardia	al fluid is :
	(1)	Normal fluid	(2)	Small effusion
	(3)	Moderate effusion	(4)	Large pericardial effusion
13.	FAL	SE statement about pericardial effo	ısion	· :
	(1)	Ends anterior to descending aort	a.	
1	(2)	almost always overlaps left atriu	m.	
	(3)	rarely > 4cm in depth.		
	(4)	Tamponade may be present.		

If TR jet velocity is 4m/s RVPS would be:

7.

14.	TRU	JE statement about cardiac ten	nponade :	
	(1)	Early diastolic collapse of RV	is the most ser	sitive sign.
	(2)	Late diastolic RA collapse is	the most specifi	c sign.
	(3)	IVC plethora is usually seen.		
	(4)	all of the above.		
15.	Judl	kins pig tail catheter has :		
	(1)	Side holes and end holes.		
	(2)	End holes only.		
	(3)	Side holes only.		
	(4)	No holes.		
16.	Low	osmolar agents are preferred	as contrast age	nts because :
	(1)	Deliver less osmotic load.		
	(2)	Less load pain.		
	(3)	Less intravescular volume.		
	(4)	All of the above.		
17.	adn	year old male with recent hin itted with sudden onset of S mosis:	story of interco	ontinental long distance air travel is 60, Normal ECG tracing - possible
	(1)	Pericardial effusion.		
	(2)	Pulmonary thromboembolism	n.	
	(3)	A cute MI.		
	(4)	Unstable Angina.		
18.	atria	Echo M mode shows increase al enlargement, normal sized L ersal i expiration in hepatic veir	V, dilated vena	nd the posterior wall of 5mm, mild acava, sepetal bounce, diastolic flow
	(1)	1HD	(2)	Valvular abnormality
	(3)	Constrictive pericarditis	(4)	Cardiac tamponade
19.	A pr	ressure half time of 200ms, rest	ing mean gradi	ent of 8mm Hg is graded as :
	(1)	Normal	(2)	Mild MS
	(3)	Moderate MS	(4)	Severe MS
100	O 00=			

20.		A 20 year old male i CRHD MS has SOBFC III, MVA by planimetry is 1.2cm ² , pressure half time 200ms wilkins score 7. Trivial MR. Treatment of choice :						
	(1)	OP medical management	(2)	PBMV				
	(3)	Surgical management	(4)	Hospitalisation.				
21.	Valv	re area in moderate Aortic stenosis is :						
* .	(1)	> 1.5cm ²	(2)	$1 - 1.5 \text{cm}^2$				
	(3)	< 1cm ²	(4)	$3-4\mathrm{cm}^2$				
22.	Mea	n gradient in severe AS is :	,					
	(1)	< 25 mm Hg	(2)	25 - 40 mm Hg				
	(3)	> 40 mm Hg	(4)	cannot be estimeted.				
23.	In m	noderate mitral stenosis mean gradient	:					
	(1)	< 5 mm Hg	(2)	5 - 10 mm Hg				
	(3)	> 10 mm Hg	(4)	no gradient				
24.	Valv	ve area in severe MS :						
	(1)	< 1 cm ²	(2)	1 - 1.5 cm ²				
	(3)	1.5 - 2 cm ²	(4)	4 - 5 cm ²				
25.	TEE	examination - probe is placed in :						
	(1)	Trachea	(2)	eosophagus				
	(3)	both	(4)	on thorax				
26.	Dop	opler vena contracta width in mild AR	:					
	(1)	< 0.1cm	(2)	< 0.3cm				
	(3)	> 0.4cm	(4)	> 0.6cm				
27.	TAI	PSE of 2.6cm indicates :						
	(1)	good RV function	(2)	good LV function				
	(3)	severe LV dysfunction	(4)	Moderate LV dys function				

40.	INO	rmal E DI is about:		*
	(1)	75ms	(2)	100ms
	(3)	200ms	(4)	500ms
29.	Dor	minent circulation in coronary arteries is	deter	mined by:
	(1)	origin of PDA	(2)	origin of PLVB
	(3)	origin of SA nodal artery	(4)	origin of AV nodal artery
				a
30.	Wh	ich is a hemodynamically significant les	ion in	coronary artery disease:
	(1)	> 30 % block	(2)	> 50 % block
	(3)	>70 % block	(4)	> 90 % block
31.	Mea	asurement of oximetry run is useful in :		
	(1)	ASD	(2)	Co-arctation of aorta
	(3)	AS	(4)	Ebstein anamoly
32.	Whi	ich of the following is a determinant of l	Periph	eral resistance
	(1)	Pulse pressure	(2)	Systolic BP
	(3)	Diastolic blood pressure	(4)	Mean aortic pressure
33.	Will	kine score is for assessment of :		
	(1)	AR	(2)	MR
	(3)	TR	(4)	MS
34.	SAN	I (systolic anterior motion) is seen in all	ovcon	
	(1)	HOCM	•	
	(3)	Thyrotoxicosis	(2)	anemia
	(3)	THYPOTOXICOSIS	(4)	Restrictive cardiomyopathy
35.	Sept	al bounce is characteristic feature of:		
	(1)	НОСМ	(2)	Constrictive pericarditis
	(3)	pericardial effusion	(4)	Restrictive cardiomyopathy
				J 1 J

MCC-002

30.	ın tı	ie apicai 5 chamber view all are seen ex	cept:	•
	(1)	Both atria	(2)	Both ventricles
	(3)	Ascending Aorta	(4)	Pul Artery
37.	Lufe	erior wall is visualised its :		
	(1)	PLAX View	(2)	Short ANS
	(3)	Apical 2C	(4)	Apical 4C
38.	Pulr	nonary Artery Diastolic pressure is dete	rmine	d by measuring EDV of :
	(1)	T.R. Jet velocity	(2)	PR Jet velocity
	(3)	MR Jet velocity	(4)	I.V.C.
39.	Pulr	nonary Artery Systolic pressure is deter	mined	by measuring :
	(1)	T.R. Jet velocity	(2)	PR Jet velocity
	(3)	MR Jet velocity	(4)	I.V.C.
40.	Mos	pholigical features of Tricuspid valve a	re all e	except :
	(1)	Low annular attachment	(2)	Triangular orifice
	(3)	Three leaflets	(4)	Two leaflets
41.	Mos	phological feature of L.V. are all except	: : :	
•	(1)	MV-AV continuety	(2)	No infundibulum
	(3)	Smooth septal surface	(4)	Large Apical trasiculalies
42.	Visc	eral situr is decided by :		
	(1)	Supra Sternal view	(2)	PLAX view
	(3)	Sub costal coronal view	(4)	Sub-costal sagittal view
43.		LAR'S CLASSIFICATION of REGUR with the chamber clearing cutis subsequent		
	(1)	1+	(2)	2+
	(3)	3+	(4)	4+

44.	Contra indication is to PBMV are all except :						
	(1)	L.A. thrombus	(2)	Moderate-severe MN			
	(3)	Conconitant severe CAP	(4)	Sev MS i Pul HM			
45.	Catl	neter of choice for LV Angio graphy :					
	(1)	Swan-ganz catheter	(2)	Amplalzer catheter			
	(3)	Pig tail catheter	(4)	Multiple purpose			
46.	Rad	io Pharma clinical tracer used for myc	ocardial	metasbolism studies :			
	(1)	18 Clinical Deoxy Glucose	(2)	Thallium			
	(3)	99-M te Sestanuitri	(4)	99-Te tetro fosmine			
47.	The	Normal Range for P.A.peak systolic pr	essure	:			
	(1)	2 - 7 Hg	(2)	4 - 12 Hg			
~.	(3)	15 - 30 Hg	(4)	50 - 60 Hg			
48.	A la	rge sodium lodide crystal photomultip	lier coll	imater are parts of :			
	(1)	2 D Echo probe	(2)	3 D echoprobe			
	(3)	Soue's catheter	(4)	Gamma Camera			
49.	A.S.D. is best seen in						
	(1)	Apical 4 chamber	(2)	Sub-costal			
	(3)	Suprasternal	(4)	SAX			
50.	Best	Echo parawelis for Assesment of Sever	rity of \	√SD shunt :			
	(1)	LVEF	(2)	LVIDd			
	(3)	LVIDs	(4)	LA Size			
51.	A PI	DA of 3mm size should be considered f	or :				
	(1)	Spontaneous closure	(2)	Device closure			
	(3)	Surgical closure	(4)	Medical management			
				•			

52.	CON	TINUOUS Doppler probe has :		•
	(1)	One crystal	(2)	Two crystal
	(3)	three crystal	(4)	no crystal
53.	MVA	by planimetery (cm²) in moderate MS	:	
	(1)	> 1.5	(2)	1.0 - 1.5
	(3)	< 1.0	(4)	< 6.0
54.	R.V.	pressure is measured by (in a case of V	SD):	
	(1)	arm BP-VSD gradient	(2)	VSD gradient - arm BP
	(3)	Syslotic BP - Diaslotic BP	(4)	VSD grandient
55.	Whi	ch probe has best penetration?		
	(1)	2	(2)	5
	(3)	7.5	(4)	10
56.	Pulr	nonary Angiography - false statement	:	
	(1)	indicates in Pul Embolism		
	(2)	Damping of pressure in MPA indicate	es mas	ssive Embolism.
	(3)	PAWP is measured using balone floa	tion c	atheter.
	(4)	Increased pressure in MPA indicates	Embo	lism.
57.	Sim	pson's method is used to calculate :		
	(1)	MR jet velocity	(2)	Pressure grandient across VSD
	(3)	LVEF	(4)	Stenotic lusims
58.	Gre	at vessels are recognised by :		
	(1)	Origin from ventricle	(2)	Morphology of Sexulunar valve
	(3)	Branching pattern	(4)	None of the above
59.	Fol	lowing are Functional causes of TR exc	ept :	
	(1)	R.U. infarction	(2)) Corpulency
	(3)	Tricuspid valve Prolapse	(4)) PPH

- **60.** Indication for Aostic valvuloplasty are :
 - (1) Peak systolic pressure gradient at rest of \geq 65mmHg.
 - (2) Peak systolic pressure gradient at rest of 50 64 with symptoms.
 - (3) Low cardiac output regardless of gradient.
 - (4) All of the above.
- **61.** Doppler echocardiography is based upon :
 - (1) change in direction of reflected sound waves.
 - (2) change in velocity of reflected sound waves.
 - (3) change in frequency of reflected sound waves.
 - (4) change in intensity of reflected sound waves.
- **62.** For optimum Doppler echo signals one has to:
 - (1) use maximum gain for doppler.
 - (2) use high filters for Doppler.
 - (3) align the Doppler beam perpendicular to the blood flow.
 - (4) align the Doppler beam in line with the blood flow.
- **63.** Pulse wave doppler is used to:
 - (1) measure low velocities in a localized area.
 - measure high velocities in a localized area.
 - (3) measure low velocities in a wide area.
 - (4) measure high velocities in a wide area.
- 64. What happens when the velocity exceeds the Nyquist limit?
 - (1) the machine gives an alarm.
 - (2) aliasing of Doppler signals occurs.
 - (3) the Doppler signal becomes inaudible.
 - (4) the Nyquist limit cannot be exceeded.

	(1)	to measure high velocities and gradients.
	(2)	to identify presence of small VSD.
	(3)	to locate exact site of stenosis.
	(4)	to quantify severity of regurgitation.
66.	Colo	ur flow Doppler mapping is based on measurement of:
	(1)	peak velocity of flow in area of interest.
	(2)	least velocity of flow in area of interest.
	(3)	mean velocity of flow in area of interest.
	(4)	difference in peak and least velocity of flow in area of interest.
67.	Two	dimensional echocardiography utilizes sound with a frequency of :
	(1)	more than 2 million cycles/sec.
	(2)	between 50,000 and 100,000 cycles/sec.
	(3)	between 20,000 and 50,000 cycles/sec.
	(4)	less than 20,000 cycles/sec.
68.	For at:	optimum image 2 D Echo cardiography the beam of ultrasound must be aligned
	(1)	0 degrees to the object of interest.
	(2)	45 degrees to the object of interest.
	(3)	90 degrees to the object of interest.
	(4)	120 degrees to the object of interest.
69.	Peri	cardial Tamponade is diagnosed when pericardial effusion is accompanied by :

Continuous wave Doppler is useful to:

65.

(1)

(2)

(3)

(4)

Diastolic collapse of inferior vena cava.

Systolic collapse of inferior vena cava.

Diastolic collapse of right atrium and right ventricle.

Systolic collapse of right atrium and right ventricle.

MC	C-002		12				
	(3)	continuity equation	,	(4)	peak mitral valve diastolic gradient		
	(1)	mitral valve planimetry		(2)	mitral valure pressure ½ time		
75.		ral valve area can be calculated fro	om all	the fo	llowing parameters except :		
		V					
	(3)	Leaflet thickening		(4)	Leaflet mobility		
	(1)	leaflet calcification		(2)	leaflet dimensions		
74.	In e	chocardiographic assessment of nowing except:	nitral :	stenos	is, the mitral valve score grades the		
	(4)	RA mean pressure 11 mmHg.					
	(3)	_					
	(2)	1					
	(1)	left ventricular end - diastolic p	ressur	e 20 m	nmHg.		
73.	A pa	atient with mitral stenosis undrgo expected except :	es carc	liac ca	theterization. The following findings		
	(4)	cardiac output.					
	(3)	diastolic function of left ventric	le.				
	(2)	systolic function of left ventricle	e.				
	(1)	heart rate					
72.	The	e gradient across a stenotic aort	tic val	ve is	related to all the following factors		
	(4)	aortic regurgitation colour jet v	vidth 1	75% of	f LVOT.		
	(3)	diastolic reversal of flow in des	scendii	ng aor	ta.		
	(2)	aortic regurgitation pressure ½	time n	nore tl	han 250 msecs.		
	(1)	left ventricular diastolic dimens	sion of	f 7.0 cr	ms.		
71.	The	e following echocardiographic find ept :	dings a	are sug	ggestive of severe aortic regurgitation		
	(4)	severity of aortic stenosis.					
	(3)	severity of coarctation.			•		
	(2)	severity of mitral regurgitation					
	(1)	severity of aortic regurgitation.					

70. The continuity equation is used to calculate:

76.	Mos	saic colour in colour Doppler indicate	es:	
	(1)	high velocity laminar flow	(2)	high velocity turbulent flow
	(3)	low velocity turbulent flow	(4)	low velocity laminar flow
77.	Peri	cardial effusion is commonly diagno	sed on ec	hocardiography by :
	(1)	echo free space behind heart and	descendin	g aorta.
	(2)	echo free space in front of the hear	rt.	
	(3)	echo free space surrounding the le	aft ventri	cle and left atrium.
	(4)	echo free space surrounding the he	eart but n	ot extending behind the left atrium
78.	dep:	9 year old male was admitted to CCU ression is anterolateral leads. Which luation?		
	(1)	Treadmill exercise test		,
	(2)	First pass radionuclide angiograph	ny	
	(3)	Ventilation perfusion scan		
	(4)	Echocardiography		
79.	Ven	ntricular angiography is useful for the	e assessm	ent of the following except :
	(1)	ventricular diastolic function		
	(2)	ventricular global systolic function	ı	
•	(3)	regional ventricular function		
	(4)	valvular regurgitation		
80.	ECC			ain, dyspnoea and hypotension. The following procedures are indicated
	(1)	Intra - arterial line.		
	(2)	Swan - Ganz PA catheter insertion	n.	
	(3)	Ventilation perfusion scan.		
	(4)	Early coronary angiography.	,	
81.	Му	ocardial viability can be assessed by	all the fol	lowing tests except :
	(1)	PET scan	(2) Doj	opler echocardiography
	(3)	Thallium scintigraphy	(4) · GSI	PECT
				•

82.	A step-up in the right atrium on oximetry can be seen in the following conditions except :						
	(1)	atrial septal defect	(2)	coronary cameral fistula			
	(3)	patent foramen ovale	(4)	VSD with tricuspid regurgitation ,			
83.	Caro	diac output can be measured by th	e follo	owing methods except :			
	(1)	Doppler echocardiography.		;			
	(2)	Fick's principle using oximetry.		•			
	(3)	Thermodilution method.					
	(4)	Tissue Doppler imaging.					
84.	The	left ventricular end diastolic press	are in	a normal individual measures :			
	(1)	0 - 5 mmHg	(2)	5 - 12 mmHg			
-	(3)	12 - 20 mmHg	(4)	20 - 30 mmHg			
85.	То с	alculate pulmonary vascular resist	ance y	you require the following except :			
	(1)	pulmonary artery diameter	(2)	pulmonary artery mean pressure			
	(3)	PA wedge mean pressure	(4)	Pulmonary blood flow			
86.	A la	rge V wave in the PA wedge press	ure tı	racing indicates :			
	(1)	acute left ventricular failure	(2)	chronic left ventricular failure			
	(3)	severe mitral regurgitation	(4)	severe mitral stenosis			
87.	Left indic	ventricular end-diastolic pressure of cates:	f 40 m	mHg in the presence of aortic regurgitation			
	(1)	hypertension with aortic regurgi	tation	•			
	(2)	acute onset severe aortic regurgit	ation.				
	(3)	chronic severe aortic regurgitatio	n.				
	(4)	combined aortic stenosis and aor	tic reg	gurgitation.			

38.	A aortic diastonic pressure of 20 mining can occur in an the following conditions except.				
	(1)	l) severe aortic regurgitation.			
	(2)	arteriovenous fistula.			
	(3)	large patient ductus arteri	osus.		
	(4)	pyrexia.			
		•		4	
89.	Equalisation of pressures in all 4 chambers of the heart occurs in :				
	(1)	large septal defects			
	(2)	post operative state			
	(3)	constrictive pericarditis			
	(4)	pneumopericardium			
90.	Which view is most preferred for angiographic assessment of left ventricular funcation?				
	(1)	right anterior oblique	(2)	lateral	
	(3)	left anterior oblique	(4)	anteroposterior	
				-	
		•		•	