No. of Printed Pages: 4

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

00796

June, 2016

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks: 75

CS-71

- Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5. Use of non-scientific calculator is allowed.
- 1. (a) If 0.333 is the approximate value of $\frac{1}{3}$, find the absolute, relative and percentage errors.
 - (b) Find a root of the equation $x^3 4x 9 = 0$, using the bisection method, correct to two decimal places.
 - (c) By using the Regula-Falsi method, find an approximate root of the equation $x^4 - x - 10 = 0$ that lies between 1.8 and 2. Carry out three approximations.

CS-71

- (d) Apply Newton-Raphson method to find an approximate root, correct to three decimal places, of the equation $x^3 3x 5 = 0$.
- (e) Solve the following system of linear simultaneous algebraic equations by Cramer's rule :

 $4x_1 + 3x_2 + 6x_3 = 13$ $2x_1 - 4x_2 + x_3 = 8$ $3x_1 - 2x_2 + 6x_3 = 17$

(f) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$, with y = 1 for x = 0. Find y approximately for x = 0.1 by Euler's method (Five steps). $6 \times 5 = 30$

- 2. (a) Using bisection method, compute one root of $e^x - 3x = 0$, correct to two decimal places.
 - (b) Find a real root of the equation $x^6 x^4 x^3 3 = 0$ by Regula-Falsi method in the interval (1.5, 16) correct to three places of decimal.
 - (c) Compute the cube root of 20, correct to two decimal places, by using any numerical method. $3 \times 5 = 15$

CS-71

- 3. (a) Solve $3x + \sin x e^x = 0$, correct to 4 decimal places using the Newton-Raphson method.
 - (b) Find a real root of the equation $e^x 3x = 0$ by the method of iteration.
 - (c) Solve the equations

 $2x_1 + x_2 + x_3 = 10$ $3x_1 + 2x_2 + 3x_3 = 18$

 $x_1 + 4x_2 + 9x_3 = 16$

using the Gauss elimination method.

3×5=15

4. (a) Solve the equations

10x - y - z = -33-x + 10y - z = 22x + y - 10z = -11

by Gauss-Jordan method.

(b) Using Runge-Kutta method, find the value of y when x = 0.01, given that x = 0 when y = 1 and $\frac{dy}{dx} = x^2 + y^2$.

(c) Solve the equations

6x - 3y + z = 112x + y - 8z = -15

$$x - 7y + z = 10$$

by Gauss-Seidel method.

3×5=15 P.T.O.

CS-71

5. (a) Prove the following :

- (i) $\Delta = \mathbf{E} \mathbf{1}$
- (ii) $\Delta^2 = E^2 2E + 1$
- (b) Use Lagrange's interpolation formula to fit a polynomial to the following data :

x	-1	0	1	3
f(x)	2	1	0	-1

Also compute f(2).

(c) Find

$$\int_0^1 \frac{1}{1+x^2} \, \mathrm{d}x$$

by using Simpson's $\frac{1}{3}$ rule. Hence, obtain the approximate value of π . $3 \times 5 = 15$