No. of Printed Pages: 5

MCH-004

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

00408

June, 2015

MCH-004 : ELECTROANALYTICAL AND OTHER METHODS

Time: 3 hours

Maximum Marks: 75

Note: Answer any five questions. All questions carry equal marks.

1. (a) Calculate the pH of $0.05 \,\mathrm{M}$ HCl and $0.05 \,\mathrm{M}$ CH₃COOH solutions.

Given : For CH₃COOH, $K_a = 1.75 \times 10^{-5}$.

- (b) Explain the principle of conductometric titrations. Draw the shapes of any *two* of the titration curves in the following cases:
 - (i) HCl with NaOH
 - (ii) CH₃COOH with NaOH
 - (iii) H_2SO_4 with NH_4OH
- (c) Derive the equation of polarographic wave. What does it represent?

5

5

5

- 2. (a) Explain the principle of amperometric titrations and write its applications. 5
 - (b) What is coulometry? How is the solution of nickel and cobalt analysed by this technique?
 - (c) Calculate the e.m.f. of the cell in which the following reaction takes place:

$$Mg + 2 Ag^+ \rightleftharpoons Mg^{2+} + 2 Ag$$

where $[Mg^{2+}] = 0.1 M$

$$[Ag^+] = 1 \times 10^{-4} \text{ M}$$

The standard potentials are:

$$E_{\text{Mg}^{2+}/\text{Mg}}^{0} = -2.363 \text{ V}$$

$$E_{Ag^+/Ag}^0 = +0.799 \,\mathrm{V}$$

3. (a) Explain glass membrane electrode. How is it used for the measurement of pH of a solution?

(b) Explain molar conductivity and equivalent conductivity of an electrolyte. The conductivity of 5.0×10^{-4} mol dm⁻³ of KCl solution is 7.44×10^{-3} S m⁻¹. Calculate the molar conductivity of KCl in aqueous solution.

5

5

Given: Conductivity of water is $0.06 \times 10^{-3} \text{ S m}^{-1}$.

	(c)	Define any <i>two</i> of the following terms briefly using a polarogram:	5
		$(i) E_{1/2}$	
		(ii) Diffusion current	
		(iii) Polarographic maxima	
		(iv) Limiting current	
		(v) Residual current	
4.	(a)	Explain the principle of a DC polarograph.	
		How is it used for the identification and determination of trace metal ions?	5
	(b)	Explain the principle and working of electrogravimetric method for the analysis of Cu(II) ions.	5
	(c)	What is thermogravimetric technique of analysis? How is this used for the analysis of binary mixture of calcium and magnesium oxalates?	5
5.	(a)	Explain the basic principle of thermometric titrimetry.	5
	(b)	Calculate the activity for $10 \cdot 0$ mg sample of an aluminium alloy containing $0 \cdot 041\%$ of manganese after a $0 \cdot 50$ hr irradiation at a flux of 5×10^{13} neutron cm ⁻¹ sec ⁻¹ .	
		Given : $t_{1/2} = 2.58 \text{ hr for } ^{55}\text{Mn}$.	
		Mass number of Mn = 55, Avogadro number = 6.023×10^{23} .	5
	(c)	Explain briefly the principle of cyclic	_
		voltammetry and discuss its applications.	5

6.	(a)	Explain the effect of atmosphere and furnace heating rate on the shape of TG curves using suitable examples.	5
	(b)	Explain the term 'Threshold Energy'. Calculate the Q value of the reaction $^{14}{ m N}~(lpha,p)$ $^{17}{ m O}.$	
		Given: $^{14}N = 14.003074 \text{ amu}$	
		4 He = 4.002603 amu 17 O = 16.999133 amu	
		1 H = 1.007825 amu	5
	(c)	Explain briefly the Isotope Dilution Analysis technique. How is it used in the determination of total blood volume in an animal body?	5
7.	(a)	Explain the technique of radioimmunoassay (RIA) for assessing the hormone concentration.	5
	(b)		
	(0)	Explain the principle and working of differential scanning calorimeter with the help of its block diagram.	5
	(c)	differential scanning calorimeter with the help of its block diagram.	5
		differential scanning calorimeter with the	<i>5</i>

I

8.	(a)	Define the terms pH and pK_a . How is the pK_a value of a weak acid calculated by	
		pH-metric titration?	5
	(b)	How will you measure electrolytic conductance of a solution ?	5
	(c)	Explain the use of DTA for the characterization of a mixture of polymeric materials, giving a suitable example.	5