No. of Printed Pages: 4

MCH-003

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

00187

June, 2015

MCH-003: SPECTROSCOPIC METHODS

Time: 3 hours

Maximum Marks: 75

Note: Answer any five questions in all. Question no. 1 is compulsory.

1. Answer any five of the following:

 $5 \times 3 = 15$

- (a) State the principle of fluorimetric determination of blood glucose.
- (b) Distinguish between fluorescence and phosphorescence.
- (c) Enumerate the advantages of FT-IR spectrometer over its dispersive counterpart.
- (d) Explain, why simultaneous multi-elemental determination by ICP – AES is easier as compared to that by AAS.
- (e) How many signals do you expect in the ¹H - NMR spectra of 2-bromopropane and 1-bromopropane?

		energy at ground state at 300 K.	
2.	(a)	What do you understand by the term fluorescence quenching? Discuss the mechanisms of fluorescence quenching.	5
	(b)	Discuss the different mechanisms of non-radiative relaxations of an excited electronic state.	5
	(c)	Explain the basis of qualitative and quantitative analysis by flame photometry.	5
3.	(a)	What are the distinctive advantages of fluorescence spectroscopy over uv-visible spectrophotometry?	5
	(b)	Discuss the merits and limitations of flame photometry.	5
	(c)	Explain the basic principle of atomic fluorescence spectrometry. What are the major components of instrumentation involved in AFS?	5
4.		tify any three of the following ements: 3×5 :	=15
	(a)	The magnitude of a chemical shift is proportional to the strength of the induced magnetic field generated by the circulation of surrounding electrons about the proton.	
	(p)	TMS is used as an internal standard for measuring chemical shifts in organic compounds.	

Calculate the population of an energy level

(f)

	(c)	Atomic emission is more sensitive to flame instability than atomic absorption.	
	(d)	Raman shift positions of Stokes and Anti-Stokes lines are equal but opposite.	
	(e)	Inductively coupled plasma are suitable for atomic emission spectrometry.	
5.	(a)	What do you understand by GFAAS? Discuss the advantages and disadvantages of GFAAS.	5
	(b)	How does phosphate interfere in the quantitative determination of calcium by atomic absorption spectrometry?	5
	(c)	What do you understand by matrix modifier? What is its importance?	5
6.	(a)	Enlist the different types of plasma sources used for atomic absorption spectrometry. State the sources of their energies.	5
	(b)	Briefly describe the working of a polychromator.	5
	(c)	What precautions should be observed while preparing samples for AAS?	5
7.	(a)	Which of the following nuclei will be NMR active and why?	
		¹⁹ F; ¹³ C; ¹⁶ O; ¹² C.	5

3

P.T.O.

MCH-003

•	(b)	record the PMR spectrum of an organic compound?	5
	(c)	Draw a labelled schematic diagram of an NMR spectrometer showing various components.	5
8.	(a)	Explain McLafferty rearrangement in mass spectrometry.	3
	(b)	Calculate the IHD for any $\it two$ of the following compounds : (i) $\rm C_4H_4$ (ii) $\rm C_5H_{10}O$ (iii) $\rm C_6H_{12}O_6$	4
	(c)	A compound having the formula C_7H_6O , showed the following spectral data: IR: Strong band at $1700~\text{cm}^{-1}$ NMR: δ 7·4 - 7·9, multiplet, 5H δ 9·8, singlet, 1H Mass: Peak at m/z = M ⁺ 106, 105, 77, 51.	8

Determine the structure of the molecule

and assign the signals.