M.Sc. (MATHEMATICS WITH APPLICATIONS

IN COMPU'TER SCIENCE)

M.Sc. (MACS)

Term-End Examination
June, 2015

MMTE-006 : CRYPTOGRAPHY

Time: 2 hours
Maximum Marks : 50
Note: Attempt any five out of six questions. Use of calculator is not allowed.

1. (a) Check whether the polynomial
$f(x)=1+x^{3}+x^{6} \in Z_{2}[x]$ is irreducible with the help of algorithm that checks the irreducibility of polynomials over finite fields.
(b) Explain the working of RC4 Stream Cipher (KSA \& PRGA).
2. (a) Solve the equation $5^{\mathrm{x}} \equiv 22 \bmod 97$ using the baby-step, giant-step algorithm.
(b) Explain Rabin-Miller Test for testing whether a large odd positive integer N is probably prime or composite. Also apply this test and state steps to check whether
(i) $\mathrm{N}=897$ is composite,
(ii) $\mathrm{N}=53$ is probably prime.
3. (a) Explain Davis-Mayer method for constructing hash function with the help of a diagram.
(b) Encrypt the plaintext "WE ARE BRAVE MEN TO FIGH'T WAR" :
(i) By using simple columnar
transformation cipher of width $5 . \quad 2$
(ii) By using key 53124 to permute columnar transformation of width 5 .
(iii) By using the keyword "TOOTH" of length 5 with Vigenere Cipher represented as integer $\bmod 26$ in keyword and plaintext.
4. (a) Construct a finite field F_{24} using the primitive polynomial $1+x+x^{4}$ and taking α as the primitive element $\mathrm{x}+\left\langle 1+\mathrm{x}+\mathrm{x}^{4}\right\rangle$ over $\left.\mathbf{Z}_{2}[\mathrm{X}] /<1+\mathrm{x}+\mathrm{x}^{4}\right\rangle$. Find Logarithmic Table and Antilogarithmic Table.
(b) Explain the Substitution Transformation and construction of the S-box of AES.
5. (a) Calculate $5^{9} \bmod 41$ by repeated squaring algorithm for integers showing all steps.
(b) Write Algorithm for ElGamal Signature Generation and Key Verification. Also explain Diffie-Hellman Key Exchange based on Discrete Log Problem.
6. Briefly explain the following :
(a) Cryptographically secure pseudo-random $\quad 2$
(b) Counter mode of operation of block cipher (both encryption and decryption) 4
(c) Computational Diffie-Hellman problem 2
(d) Confusion and diffusion in the context of a cryptosystem 2
