No. of Printed Pages : 3

MMTE-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) M.Sc. (MACS) Term-End Examination June, 2015

MMTE-006 : CRYPTOGRAPHY

Time : 2 hours

Maximum Marks : 50

Note : Attempt any **five** out of six questions. Use of calculator is **not** allowed.

- 1. (a) Check whether the polynomial $f(x) = 1 + x^3 + x^6 \in \mathbb{Z}_2[x]$ is irreducible with the help of algorithm that checks the irreducibility of polynomials over finite fields.
 - (b) Explain the working of RC4 Stream Cipher (KSA & PRGA).
- 2. (a) Solve the equation $5^x \equiv 22 \mod 97$ using the baby-step, giant-step algorithm.
 - (b) Explain Rabin-Miller Test for testing whether a large odd positive integer N is probably prime or composite. Also apply this test and state steps to check whether
 - (i) N = 897 is composite,
 - (ii) N = 53 is probably prime.

MMTE-006

1

4

6

4

- (a) Explain Davis-Mayer method for constructing hash function with the help of a diagram.
 - (b) Encrypt the plaintext "WE ARE BRAVE MEN TO FIGHT WAR":
 - (i) By using simple columnar transformation cipher of width 5. 2

3

4

6

4

6

- (ii) By using key 53124 to permute columnar transformation of width 5. 2
- (iii) By using the keyword "TOOTH" of length 5 with Vigenere Cipher represented as integer mod 26 in keyword and plaintext.
- (a) Construct a finite field F_{24} using the primitive polynomial $1 + x + x^4$ and taking α as the primitive element $x + < 1 + x + x^4 >$ over $\mathbb{Z}_2[X] / < 1 + x + x^4 >$. Find Logarithmic Table and Antilogarithmic Table.
 - (b) Explain the Substitution Transformation and construction of the S-box of AES.
- 5. (a) Calculate 5⁹ mod 41 by repeated squaring algorithm for integers showing all steps.
 - (b) Write Algorithm for ElGamal Signature Generation and Key Verification. Also explain Diffie-Hellman Key Exchange based on Discrete Log Problem.

MMTE-006

4.

2

6. Briefly explain the following :

(a)	Cryptographically secure pseudo-random bit generator	2
(b)	Counter mode of operation of block cipher (both encryption and decryption)	4
(c)	Computational Diffie-Hellman problem	2
(d)	Confusion and diffusion in the context of a cryptosystem	2

3